Basrah Journal of Science Vol., 37 (1), 25-43, 2019

The Operator ,.®, and the Polynomials K,
Husam L. Saad ! Sadeq M. Khalaf 2
Department of Mathematics, College of Science, Basrah University, Basra, Iraq
Lhus6274@hotmail.com Zsadegalshawio@gmail.com

Doi 10.29072/basjs.20190103

Abstract

Based on basic hypergeometric series, a new generalized g-operator ,®, has been constructed and
obtained some operator identities. Also, a new polynomial K,(a,...,a,, by, ...,bs,c;a;q) i
introduced. The generating function and its extension, Mehler’s formula and its extension and the
Rogers formula for the polynomials K,(ay, ..., a,, by, ..., b, c; a; @) have been achieved by using
the operator ,.®,. In fact, this work can be considered as a generalization of Liu work’s by imposing
some special values of the parameters in our results. Therefore the g~1-Rogers-Szegd polynomials
h,(a,b|q~1) can be deduced directly.
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1. Introduction
Throught this paper, the notations in [2] will be used here and assuming that |g| < 1.

Definition 1.1. [2] . Let a be a complex variable. The g-shifted factorial is defined by

@ao=1 @@= [0a-ag (@a.=]]a-as.
k=0 k=0

The compact notation for the multiple g-shifted factorial will be adopted here

@y, s @ @ = (A1 D - (A Dy
where n is an integer or .

Definition 1.2. [2] . The basic hypergeometric series ,¢, is defined by
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ay, ..., 0y
r®s(ay, e, r; by, v, b3 q,x) = r¢s< :q,x>
by, ..., by

_ N (ay; Qr(az; Q- (ar; Pk e (9) Lbsor
4 (0 D i(by; Qg - (bs; Dy [( D% ] x5

where r,s € N; ay, ..., a,, by, ..., bg € C; and none of the denominator factors evaluate to zero. The
above series is absolutely convergent forall x e C if r <s + 1, for |x| <1 if r =s+ 1 and for
x=0ifr>s+1.

Definition 1.3. [2] . The g-binomial coefficient is defined by

n (4; Dn .
, 0<k<n;
l N@Goe@on 7 " (1.1)
k 0, otherwise,
where n, k € N.
The following equations will be used in this paper [2]:
(@; 9w
a; = — 1.2
e (Y, i
(q/a; qk)k = (-a) kq 27(aq™"; @)oo/ (@5 @) o (1.3)
n—k\y_(m _
("5 ) =G)+ )+, (1.4)
n+k\_(m k
("3 ) =)+ () +kn, (1.5)
where n and k are integers. Cauchy identity is given by [2]
z (a q)k k (ax q)oo’ |X| <1 (16)
& (q; Dr | @O
The special case of Cauchy identity was founded by Euler [2] which is
-4
= (X;q) 0. 1.7
£ (49 5@ a7

Definition 1.4. [3] . The operator 6 is defined by

o7y =12, (18)
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Theorem 1.5. [3]. (Leibniz rule for 8). Let 6 be defined as in (1.8), then
n

0"{f@g@} =[] 0¥ (@10 *{glag ™))
k=0

The following identities are easy to prove:

Theorem 1.6. [4, 5, 6] . Let 8 be defined as in (1.8), then

kf my — (q' q)n n—k (’2‘)+k(1+n)
e’} @ Dnr 1 '
0 {(at; @)oo} = (=) (at; @)oo
@6 @) _ e (5, . (at; Q)
O amay) = 7D g vl <1

In 1998, Chen and Liu [4] defined the g-exponential operator E(b8) as follows:

Definition 1.7. [4] . The g-exponential operator E(b6) is defined as follows:

2 (bg)nq(g)

E(b6) = (@ Dn

n=0
Chen and Liu proved the following result:
Theorem 1.8. [4] . Let E(b@) be defined as in (1.13), then
E(b6){(at; q).} = (at,btq)..

(as, at, bs, btq).,,
(abst/q; @)

E(bB){(as,at; q).} = , |abst| < 1.

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

They used the g-exponential operator E(b8) to present an extension for the Askey beta integral.

In 2006, Zhang and Liu [6] used E(d6) to prove the following result:

Theorem 1.9. [6] . Let E(dB) be defined as in (1.13), then

q " q/as
E(d6){a"(as; q)} = a™(as; Q)w 2¢1< i q, ds), |ds| < 1.

0

27

(1.16)
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b

In 2007, Fang [7] defined the Cauchy operator ;®, ( 5 q, —c@) as follows:

b

Definition 1.10. [7] . The Cauchy operator 1CI>0< i q, —cG) is defined by

b o
1%( ;q,—c9>=n=o EZ Z%: (—co)™. (1.17)

Fang proved the following result:

b
Theorem 1.11. [7] . Let D, ( ;q, —c9> be defined as in (1.17), then
oo 30,-c6 )iy = LEEDe g g (1.18)
4, —C as;q)ows = —  —~ - I€s . .
O (S5 @)
b
Fang used Cauchy operator P, ;q,—cO | to obtain an extension for the

q-Chu-Vandermonde identity.

In 2010, Zhang and Yang [8] introduced the finite g-exponential operator with two parameters

qa v
2&1 ;q,c0| as follows:
w
qav
Definition 1.10. [8] . The finite g-exponential operator ,&; ;q,cO] is defined by
w
-N 00
v (@™, v; )n
& ;q,c0| = — (O™
2 [ ] - (@ w; Dn
w n=0

By using this operator, , Zhang and Yang found an extension for g-Chu-Vandermonde summation
formula.

In 2010, Liu [1] defined the g~1-Rogers-Szegd polynomial as follows:

Definition 1.12. [1] . The g~1-Rogers-Szegd polynomial h,,(a, b|q~1) is defined by

nom
h,(a,blg™?) = Z [ lqkz‘”kakb”‘k. (1.19)
k=0 Lk
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Liu used the g-difference equation to prove the following:
Theorem 1.13. [1] . Let h,(a, b|q™ 1) be defined as in (1.19), then

« The generating function for h,(a,b|q™ 1)

n()
:E: h,,(a,blg™) (q) = @bt q).. (1.20)

» Mehler’s formula for hy,(a,b|q™1)

(—t)"q?) _ (act, adt, bet, bdt; q)
(@ Dn (abcdt?/q; @)

> (@ blg™Dhy(c,dlg™) (1.21)
n=0

provided that |abcdt?/q| < 1.

a1; ) ar
This paper is organized as follows: In section 2, a generalized g-operator ,®g ( ;i q, —ce)
by, ..., b
and some of its identities will be definded and studied. In section 3, we define a polynomial
K,(a4, ...,a,, by, ..., bs, c; a; q) and represent it by the operator ,®,. The generating function and
its extension for K, (ay, ..., a,, by, ..., bs, c; a; q@)is obtained. In section 4, the Mehler’s formula and
its extension for K,(ay, ..., a,, by, ..., bs, c; a; q) is derived . while, in section 5, the Rogers formula
for K,,(ay, ..., a,; by, ..., bs, c; @; q) is constructed. Finally, section 6 is focused on the summary of
the results and the conclusions.

2. The Operator ,®, and it’s Identities

aq, .., Ay
In this section, we define the generalized q-operator ,.®, < 5 q, —c9> as follows:

by, ..., b

aq, e, Ay

Definition 2.1. The generalized g-operator rd)S( ;q,—cG) is defined by

by, .., by

a’l! "-;ar 0 . )
(G,l, vy Ay Q)k (—CQ) (k) 1+s—r
()] ;q,—cl | = _1 kq k . 2.1)
' S(bl,...,bs ) e (b1, -, bs; Ok (@D [( ) ]

When r = s = 0, we get the g-exponential operator E(c6) defined by Chen and Liu [4] in

b
1998. Also when r = 1,s = 0, a; = b, we obtain the g-exponential operator 1<1>0< i q, —c9>

defined by Fang [7] in 2007. And when r = 2,s =1, a; = q~V, a, = v, b, = w we obtain the
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-N
q v
finite g-exponential operator with two parameters ,&; [ i q, c@] defined by Zhang and Yang
w
[8] in 2010. Finally, when r=2,s=1, a; =u, a, =v, b; =w, we get the generalized

u,v
q-exponential operator with three parameters [E

lq; c@l defined by Li and Tan [9] in 2016.
w

(@, ari @k by Wj. Then the generalized g-operator @,

In this paper, we will denote to
p p (bl,...,bs;q)k

can be written as follows:

aq, ..,y ® k 14+s-r
(=ch) (%)
o ;q,—c )= ) Wy 1)k : (2.2
' S(bl,...,bs ! ) kZo (@ Dr (e )
a, ..., Ay
Theorem 2.2. Let r<I>S< ;q,—c9> be defined as in (2.2), then
by, ..., bg
a, ..., a, (Ct)k
rq)s< _C9> {(au at; q)oo} - (au at; Q)ooz z k+ji 7 TN
bl,...,bs o 0 P! (@ D
K\, 1ts—r : s—r ]
<[] D ey [ -1y D] g, 23)
Y]

a, .., a,
Proof. From the definition of the operator r(DS< ;q,—cH) and by using Leibniz rule
by, ..., b

(1.9), we have

a, ..., ar
ON ( 54, —69> {(au, at; @)}
by, ..., by

N —o)k ¢ _1+4s-r
) ,Z:;, W ((q.(c:z))k -(_1)kq(§)_ 0% {(au, at; q)..}

i —_~k _ J1+s—r
N [l Z k67 ((aw; 9)..36%{(atq; 9)..}

= e =
2 1+s & q,9)

— k » 1k j
kZ “(a, q)k [( D Z (@, 0);(@ Dr- ,( W @)

X (—tq kI (atq™7; q).,
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o]

k
- SOL PNV () R @Dk o
Z " @ [t = @0, D W@ @)

x (O Iq ™ (~at)qg 2 7 (q

/at; q);(at; q)« (by using (1.3))
2 & —r\k+J +s-r iNq1+s—T1
= (at, au; q)ooz Z Wk+j%[(—1)kq(§)]l [(_1)161(;)] qkj(1+s—r)
j=0 k=0 ’
X (—u)) () q I+ (—atyl 2 7 L2 D (by using (L5))
(q,9);
> k 1+s—r t; . . A
(awat). Y. Y Wi O[] gy [-1y7q)]
j=0 k=0 4:9)j
X qk](s—r).

|
By setting r = s = 0 in (2.3), we get Theorem 2.11. obtained in Chen and Liu [4] (equation
(1.15)).

Putting u = 0 in (2.3), we get the following corollary:

ag, ..., ar
Corollary 1. Let r(DS< ;q,—cG) be defined as in (2.2), then
by, ..., bs
a, .., 0, 1457
r®s( ;q,—c0>{<at; 0.} = (a6 Tico Wi 22 [-15qR)] . 29)
by, ..., b (@D

Setting r = s =0 in (2.4), we get Theorem 2.9. obtained by Chen and Liu [4] (equation
(1.14)). Setting r =1 and s = 0 in (2.4), we get Theorem 1.3. obtained by Fang [7] (equation
(1.18)).

a, ..., 4y
Theorem 2.3. Let ,®g < ;5 q, —c0> be defined as in (2.2) and n € Z*, then
by, ..., b
a, ..., n *® k 1+s—1
(ct) K
rcbs( —ce) (@"(at, )} = @M@, Q)0 ). Y Wienjroon | (—1)*q(2)]
by, ., by = T D
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(@™a/at@); s O kies—n
S Gl |-17q)]  griem, (2.5)

Proof. From (2.2), we have

al; ---!aT N (_
@, | by, .., bs; q,—cO | {a™(at, q).,.} = z Wy (
k=0

K 1+s-1

4q@)]  oar(at,q).)

By using Leibniz rule (1.9), we have

a, .., a,
MOoN ( i q, —c9> {a™(at, Q) e}

by, ..., b
B © (—C) 1+s—-r n
_kZ Wi s [( kg ( jZ;kJ@’{a 3651 {(atq™7; q)oo }

=

© 1+s -7 (q.q)k
k Jah—JjqJ
kz “(g; q)k ( D™ z CHAONRCH IS ,( D'l a);

x 0% I{(atq™/; @)} (by using (1.1) and (1.10))

SN ok [ g (T 1 v gl g (e g -y
;Wk( [ (~1)%q2)] ;(q;q),(q;q)k_,-( 1/a" ) (4™ q);(~tq ™)
X (atq™7; Qe (by using (1.11))

= SN A(—KkHT | (—=1YktT (k+j) 1"‘5‘7”; 1N aJagitg=" o). (—ta= )k
;;Wkﬂ( B (O I N R AR
x (—at)q 2 7 (q/at; ) (at; 9). (by using (1.3))

3 o R [y 0]

x qkis=m), (by using (1.5))
m

Setting r = s = 0 in (2.5), we get Corollary 2.4. obtained in Zhang and Liu [6] (equation(1.16)).
3. The Generating Function for K, (a4, ..., a,; b4, ..., bs, c; a; q)

In this section we define a polynomial K,(a,...,a,; b4, ..., bs, c; a; q). By using the operator
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Aqy ey Ay

r Oy ( 5 q, —c9>, we get the generating function and its extension for the polynomials K,,.
by, ..., b

We give some special values to the parameters in the generating function and its extension for

K,(a4,...,a,; by, ...,bg,c;a;q) to obtain the generating function and its extension for the

q~!-Rogers-Szego polynomials h, (a,b|q™1).

Definition 3.1. The polynomial K, (a4, ..., a,; by, ..., bs, c; a; q) is defined by
n

2+s-r

n ) me
K,(aq,..,a:; by, ....,bs,c;a;q) = z [k] W, c* [(—1)"q(2)] gkd-mgn-k (3.1)
k=0
_ (ayar@k
where W), = ————.
T (brbsiak

Setting r=s=0, a=b, c=a in (3.1), we get the g~ !-Rogers-Szegé polynomials
h,(a,b|q™") (2.12) defined by Liu [1] (equation (1.19)).

Theorem 3.2. Let the polynomials K,(ay, ..., a,; by, ..., bs, c; a; q) be defined as in (3.1), then

all —y ar
rq)s <b b ;q;_C9> {an} = Kn(a1, vy Ay bl' ...,bs, c;a; q) (32)
1+ Dg
Proof.
al) vy a,r
r(Ds ( ; q, —C9> {an}
bl, o, b
( 9)k 1+s-r
= Z Wy [( 1)k ] {a"
oo K 1+s—r .
1 9 {an}
kZ (q Q)k [( )"d ]
N K\11ts-T : .
Z ( )] %amkq(Z)_nHk (by using (1.10))
k=0 Do
n
n K\2+s—T ) .
- Z [k] Wi c* [(—1)"q(2)] gka-m gn—k
= Tl(all . ;a‘r'; bl""’bSI C; a; q) ]

Theorem 3.3. (The generating function for K,,). Let K, (a4, ...,a,; by, ..., bs, ¢; a; q) be defined
as in (3.2), then
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(—w)"q®

. Ay, ey Ay
Z K,(ay, ..., ap; by, ..., bs, c; a; q) ————— = (au; q) P ;q,cu |, (3.3)
— (4 Dn b .. b
=0 1 »MUs

provided that the series is absolutely convergent Vcu e Cif s>r—1,cu=0if s<r —
land |cu| < 1lif s=7r—1.

Proof.
i — g2
7;) K,(a4,...,a,; by, ..., b, C; a; q)%
&t g |
= Z) r D <b1,,,,, i q, —c9> {a }W (by using (3.2))
ay, ..., ay © o na
(—1)"q'‘2
= O ;q,—cO —(au)”
(bl,...,bs ){; (@ Dn }
alr ar
= rq)s( :q:—09> {(au; @)o} (by using (1.7))
bl,...,b
( )k 1+s—r '
= (ay; q)ookz G D [(— )k ] ( by using (2.4))
a, ..., 4y
= (au; q) rq)s< ;4 Cu>-
by, ..., bg

u
Setting r=s =0, a = b, c = a in(3.3) we obtain the generating function for the polynomials
h,(a,b|q1) (2.13) obtained by Liu [1] (equation (1.20)).

Theorem 3.4. (Extension of the generating function for K,).
Let K,(ay, ..., ar; by, ..., bs, c; a; q) be defined as in (3.2), then
S (—w"q®?

= l -
T AL

Z K,.(aq, ..., ar; by, ..., bs, ;a5 q)

n=0

x i i (Q‘l,(Z;/:)uj; q); [(—1)fq(£)]s_r (W, ((cu))i [( by q(l)]1+s_rqij(s—r)_ 4

N (—1)"q2
K. ay,..,a;; by, ..., bg,c;a; Q) ————
z Tl+l( 1 1 S q) (q; q)n
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=y o r-q o)t S0 (by using (32))
o "\ b, (@ Dn '
1,...,(17- © _1\n n (n)
_ rcps( ;q,_ce>{az CD" (@) ‘“}
by, ..., by oy (@ Dn
a, ..., Ay
= r(Ds( :q.—69> {a'(aw; )0} (by using (1.7))
by, ..., b
l oo ,
(¢ q/au; q); O o, !
— al(au: J{=1) W, .
T q)w; = @ [( i ] Wi G,
1+s—r
X (—1)iqizl g, (by using (2.5))

Setting r =s =0, a = b, ¢ = a in(3.4) we obtain an extension of the generating function for
the polynomials h,(a,b|qg™1) as follows:

l

n,(3) gl  q) - i ;
Zhnﬂ(ablq-l)( DO sy, Y LD (g T i)

(@ @n oo @9 (@ )i
i (La/bw; N\ (aw) i ()
b(bu,q)ooj=0 @D, (au) et )l( 'q
-1 cAY .
 biau b ),y A PEDj

=G

4. Mehler’s Formula for K, (a4, ...,a,; b4, ..., bs, C; a; q)

In the section, we will derive Mehler’s formula and its extension for the polynomials K,, by using
the operator ;. We give some special values to the parameters in the Mehler’s formula and its
extension for K, to obtain Mehler’s formula and its extension for the g~!-Rogers-Szegd
polynomials h,(a,b|q™1).

Theorem 4.1. (Mehler’s formula for K,,). Let K, (a4, ..., a,; by, ..., bs, c; a; q) be defined as in
(3.2), then

(—w)"q?

z K,(ay,...,a;; by, ...,bs, c; a; Q) Ky (ay,, ..., Aps; byy, .., by, €5 a'; q)w
) n

n=0
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ri i (q"‘,(qq/;c;’;l]y;q)j

= (aua’; q)ooi W (cua?)” [(— Ykq (k)]HS

k=0 (4 Die j=0 i=0
s-r . au)! i\its-r
[( 1)1 ( )] (Cau)JWH]H[(_l) q(é)] qu(s—r)’ (4.1)
’ l
provided that |cua'l < 1.
Proof.
C L (wrg®@
z Kn(al; ey ar; blP ey bs; c,a,; Q)Kn(ay; ey a‘rl; bln ey bs,, c,a; q) —
(@ Dn
© ay,..,a. ’ (—u)nq(g)
= z K,(ay,..,a.; by, ..., bs,c; a; q) D ;q,—c 0 | {(a"™} (—)
n=0 by ....,by 4 9)n
al', ey ar’ (_a’u)nq(g)
= O ;q,—c'0 42 Kp(ay, ..., ayp; by, ..., bs, C;0; Q) X —————
by, ..., by — (4 Dn
Aqry ey A ay, o, Qp
= rd)s( ;q,—c'9><(aua'; Qo rfl)S( 3 q, cua')} (by using (3.3))
by, ..., by by, ..., by
Aqry een, Ay © nk 1+s—-r
cua
= rq)s( :q,—C'9> 1(aua’; Q)ooz: Wi ( ) [( 1)%ql ] }
by, ..., by k=0

Aqpy eeer Ay

e ( )k 1+s-r
-3 oyl @(

k=0 bll; . Ibsl

had (cua’)k 1+s -r k
= (aua’;q)e ) W, (= 1)"
aua;q kzzo k (q; q)k [ Z

j=01

;4 69>{(a) (aua’; 4)co}

(g7, q/a'au; q)
CHOT:

'M8

=l
+ o

<] canm, L2 “”))l[<— g gue. by using @25)
|

Settingr=s=0,c =c,a=>b,a ' =d, c=a and u =t inequation (4.1) we get Mehler’s

formula for the polynomials h, (a, b|g~1) (2.14) obtained by Liu [1] (equation (1.21)) as we see in
the following corollary:

Corollary 2. (Mehler’s formula for h,(a,b|q™1)). Let h,(a,b|g~1) be defined as in (1.19), then

(-0"q@  (act, adt, bet, bdt; q)..
CHS (abcdt?/q; @),

> (@ blg™)ha(c,dlg™)
n=0
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provided that |abcdt?/q| < 1.

Proof. Setting r =s =0, c'=c,a=b, a'=d, c =a and u =t in equation (4.1) we get

(-t)"q?
(CHAR

2 (atd)k e ,q/dbu bt
— (btd; q)wz EZ?q;k(_nkq('z‘)z z (0™ q/dbu; q), by & 24 (—1)ig(2)
k=0 -’

Z (@ b1g ™ hn(e, dlg ™) == —

oo (@) CHO
N (atd)f (@/dth;@); o (ki (GDe
(btd’q)wkzzom;q) Z @0, 1T G, Pt )
_ D, ey a5 L ()
— (btd, cbt; q)mz (cbt)i(=1)/q @, (—1)k+ig
© N o k
- Gt ) %(cbmawq—f > 8“& ~1)%q®) by using (1.5))
(cat; Q) e .
= (btd, cbt; @) (adt; @) (by using (1.6) and (1.7))

(acbdt?/q; @)

_ (btd, btc,atc, atd; q) o
 (achdt?/q;q)e

Theorem 4.2. (Extension of Mehler’s formula for K,). Let K, (a4, ..., ay; by, ..., bs, ¢; a; q) be
defined as in (3.1), then

., (—u)nq(g)
Z Kyim(aq, ...,ay; by, ..., bs, c; a; @)Ky (aqy, .., Qyp; b1y, -, bgy €5 075 Q) —
n=0 (qr q)n

moooo(_m,/';). ST ' e
- ;; - (Z;C;C)lju q][(—l)fq(é)] (cu)JWH]( [( 1)q ]

g . o (g~ g/ aus 15T
X D (@Y @ ) Y Y ( C.I/) D] oy
1=0 k=0 T
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o e

Proof.

! !
Z Kpim(aq, ...,ar; by, ..., bs, c; a; Q) Kp(aq,, ..., ays; by, .., bgy, €505 q)

n=0

Ay eeny Ay
= Z Kpim(aq, ..., a; by, ..., bg, c; a; q) Ds ( 5 q, —c'@) {(a)™}

by, ., by

(@ Dn

n=0

B GDN @)

(@ Dn
al', ...,ar! @

= rq)s( ;q,—c'@) Z K,im(aq, ...,ar; by, ..., bg, C; ;@)
by, ..., by =0

Aty ey Ay )

,q/aau; q);

= r(DS( i q, —c'9> a™(aa'u; q). E E @.a/ 9,
by, ..., by (a4 q);

j=0 i=

(by using (3.2))

(—a'uw)nq?)
CH

J

X [(—1)jq(2)]s_r (cua’)! Wiy, (( ua) [(_ )' q( )]1+S rqij(s_r)} (by using (3.4))

Qi

(—w)"q?)

(4.2)

—amzz(q P 1yig D] (e S [ iq ] g

CHO),

j=0 i=

A1y eeny Ay
X T(DS ( y 4, _C’9> {(a’)H-j (aa'U; q)oo}
by, ., by

N

_ ami i (@™ q/aau; @), [(—1)jq(£)] ’ () Wiy L o [( 1igls ]“S gTen

= CHO
® 2 —(i+)) oo s—r
x (ar)i+j(alau’ q)ooz Z (q J(;(;I{;)’-lau, 9 [(_1)1(](5)] (c’au)kaH
1=0 k=0 ’
k 1+s—-r
x ((Za;‘))k (14| gqre, (by using (2.5))
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Settingr=s=0,a=b, c=a, ¢ =c and a’ = d in equation (4.2) we get an extension of
Mebhler’s formula for the polynomials h,(a,b|q~1) as we see in the following corollary:

Corollary 3. (Extension of Mehler’s formula for h,(a, b|q™1)). Let h,,(a,b|q™ 1) be defined as
in (1.19), then
N (—w)"q)

Rpsm(a, blg~Dhy(c, dlg™h)
Z; nm " (@ Dn

i -m cY. d —(i+)) :
:bm(aud,cbu,dbu,q)oo; < (Z/ Ziu’ 9, (aud/q)! Z (@ ](;1?; ;llbu'q)l(cbu)l.
Proof.
Settingr =s=0,a=b, c=a, ¢ =c and a’' = d inequation (4.2) we get
N ] NGO
hem(@ blg~ DR (c,d|q™1)
ZO e (@, D1q™ (e dlg™) s
- o (¢, q/bdw; q); jlaud)t ()
VN @D g db ) (b
XIZ”ZO o VG Ve
N (0™ a/bdu; g) (au (@)
= b™(dbu, @), ud/q)’ j
(M),Zo @ /)Z (1)
N @ a/dbus o), (Cbu)l G (B egl®)
L (@ — (4 Dk
. o (7™, q/bdu; q); (a7, q/dbu; q),
— b™(aud, chu, dbu,q)w; @/ )JZ o (chu)L.

(by using (1.7))
5. Rogers Formulafor K, (a4, ...,a,; by, ..., b, C; a; q)

We will derive, in this section, Roger’s formula for the polynomials K,, by using the operator
~@s. We give some special values to the parameters in Rogers formula for
K,(ay,..,a;; by, ..., bg,c; a; q) to obtain Rogers formula for the g~1-Rogers-Szegdé polynomials
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hn(a,blg™).

Theorem 5.1. (Rogers formula for K,,). Let K, (a4, ..., a,; by, ..., bs, ¢; a; q) be defined asin (3.2),
then

0 0o —t)" (721) —u\)m (Tél)
Z Z Kn+m(a1, , Ay bl;---)bSI ¢ a,; CI) ( (q)qc)l ( (I;)qf

n=0 m=0
NN @), T Oy "
- (e q)oo; k=0 CHOJ, (actu/q)’ [( Dlq® ] Wiesj (@D
X [(~1)kq®]" T gitsm), (5.1)
provided that |actu/q| < 1.
Proof.
N (=0"q%) (-uymq(?)
Knim(aq, ..., a,; by, ..., bs, C; @;
; ZO (@ iy D@D @om
o0 0 a, ..., Ay _\n (Tl) _\m (m)
=), rﬂbs( ;q,—c9>{an+m}( Oha CuPa
e L by, ..., bq @GDn (@G Dm
a, ..,y © vt na(D) &y _1ym m (%)
(=1)"(at)"q'2 (=)™ (au)™q" 2
= ;O ;q,—cO
(bl,---,bs e >{; (@ Dn Z:O (4 Dm }
a, ..., ar
= Oy (b ) :q,—Cé’) {(at; Po(av; ).} (by using (1.7))
1) YUs
B ' o (q/ua; q); T O (cu)*
= (at, au; q)oojzz(; kzzo —(q; q)j (actu/q)’ [( 1)/q\2 ] Wi j —(q; D
k 1+s—-r .
X [(—l)kq(z)] qkiGs=m, by using (2.3))

|
Setting r=s=0, a=»b and c = a in equation (5.1) we obtain Rogers formula for the

polynomials h,(a,b|q™1) as we see in the following corollary:

Corollary 4. (Rogers formula for h,(a, b|q™1; q)). Let h,(a,b|g™1) be defined as in (1.19), then

S ot oy 0" g ?) _ (at,au, bt bu; q).
D D, ren(@bla™s )= e = S

n=0 m=0
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provided that |abtu/q| < 1.
Proof.
Setting r =s =0, a = b and ¢ = a in equation (5.1) we get

0 & _ig® (—ymg (D
53 oot S

n=0 m=0

(00} (0] k
=@ 31 3 S et s (4
k=0 ’

j=0

_ (a/au; ); N @t
(b, b Z @, LU 4 Gl D

B (bt,at, bu, au; q)
(batu/q; q) o

(by using (1.6) and (1.7))

|

6. Conclusions

aq, ..,y
This paper devoted to study a new generalized g-operator rCI>S< 5 q, —c@). Also, a new

by, ..., b
polynomial K, (a4, ...,a,, by, ...,bs,c;a;q) is constructed. The generating function and its
extension for K,(a,..,a, by, .., bs,c;a;q) is studied. Also, the Mehler’s formula and its
extension for K,(ay,...,a, by,...,bs,c;a;q) is investigated. While, the Rogers formula for
K,(a4,...,a,; by, ..., bg, c; a; q) is constructed. In order to explore the results, one can imposing
some special values of the parameters. So, by settingr =s =0, a = b, ¢ = a in the generating
function and its extension for K,(a,...,a,, by, ...,bs,c;a;q), the generating function and its
extension for the g~!-Rogers-Szegd polynomials h,(a,b|g™1) is obtained directly. Also, by
setting r=s5s=0, a=b , c=a in Mechler’s formula and its extension for
K,(a4,...,a;, by, ..., b5, c;a;q), the Mehler’s formula and its extension for the polynomials
h,(a,b|q™1) is achieved directly. Finaly, by setting r =s = 0, a = b, ¢ = a in Rogers formula
for K, (ay,...,a,,by,...,bs,c;a;q), the Rogers formula for the polynomials h,(a,b|g™?!) is
created.
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