The Operator ${ }_{r} \Phi_{s}$ and the Polynomials $\boldsymbol{K}_{\boldsymbol{n}}$

Husam L. Saad ${ }^{1} \quad$ Sadeq M. Khalaf ${ }^{2}$
Department of Mathematics, College of Science, Basrah University, Basra, Iraq
${ }^{1}$ hus6274@hotmail.com ${ }^{2}$ sadeqalshawi0@ gmail.com

Doi 10.29072/basjs. 20190103

Abstract

Based on basic hypergeometric series, a new generalized q-operator ${ }_{r} \Phi_{s}$ has been constructed and obtained some operator identities. Also, a new polynomial $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is introduced. The generating function and its extension, Mehler's formula and its extension and the Rogers formula for the polynomials $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ have been achieved by using the operator ${ }_{r} \Phi_{s}$. In fact, this work can be considered as a generalization of Liu work's by imposing some special values of the parameters in our results. Therefore the q^{-1}-Rogers-Szegö polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ can be deduced directly.

Keywords: q-operator, generating function, Mehler's formula, Rogers formula, the q^{-1}-RogersSzegö polynomials.

AMS Classification: 05A30, 33D45

1. Introduction

Throught this paper, the notations in [2] will be used here and assuming that $|q|<1$.
Definition 1.1. [2] . Let a be a complex variable. The q-shifted factorial is defined by

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

The compact notation for the multiple q-shifted factorial will be adopted here

$$
\left(a_{1}, \ldots, a_{r} ; q\right)_{n}=\left(a_{1} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n}
$$

where n is an integer or ∞.
Definition 1.2. [2] . The basic hypergeometric series ${ }_{r} \phi_{s}$ is defined by

$$
\left.\begin{array}{rl}
{ }_{r} \phi_{s}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s} ; q, x\right)={ }_{r} \phi_{s}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q, x\right.
\end{array}\right) .
$$

where $r, s \in \mathbb{N} ; a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s} \in \mathbb{C}$; and none of the denominator factors evaluate to zero. The above series is absolutely convergent for all $x \in \mathbb{C}$ if $r<s+1$, for $|x|<1$ if $r=s+1$ and for $x=0$ if $r>s+1$.

Definition 1.3. [2] . The q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \tag{1.1}\\
k
\end{array}\right]= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } 0<k<n \\
0, & \text { otherwise }\end{cases}
$$

where $n, k \in \mathbb{N}$.
The following equations will be used in this paper [2]:

$$
\begin{align*}
(a ; q)_{n} & =\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}} \tag{1.2}\\
(q / a ; q)_{k} & \left.=(-a)^{-k} q^{(k+1} 2\right)\left(a q^{-k} ; q\right)_{\infty} /(a ; q)_{\infty} \tag{1.3}\\
\binom{n-k}{2} & =\binom{n}{2}+\binom{k}{2}+k-k n \tag{1.4}\\
\binom{n+k}{2} & =\binom{n}{2}+\binom{k}{2}+k n \tag{1.5}
\end{align*}
$$

where n and k are integers. Cauchy identity is given by [2]

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} x^{k}=\frac{(a x ; q)_{\infty}}{(x ; q)_{\infty}}, \quad|x|<1 \tag{1.6}
\end{equation*}
$$

The special case of Cauchy identity was founded by Euler [2] which is

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{\binom{k}{2}}}{(q ; q)_{k}} x^{k}=(x ; q)_{\infty} \tag{1.7}
\end{equation*}
$$

Definition 1.4. [3] . The operator θ is defined by

$$
\begin{equation*}
\theta\{f(a)\}=\frac{f\left(a q^{-1}\right)-f(a)}{a q^{-1}} \tag{1.8}
\end{equation*}
$$

Theorem 1.5. [3]. (Leibniz rule for θ). Let θ be defined as in (1.8), then

$$
\theta^{n}\{f(a) g(a)\}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.9}\\
k
\end{array}\right] \theta^{k}\{f(a)\} \theta^{n-k}\left\{g\left(a q^{-k}\right)\right\}
$$

The following identities are easy to prove:
Theorem 1.6. [4, 5, 6] . Let θ be defined as in (1.8), then

$$
\begin{align*}
\theta^{k}\left\{a^{n}\right\} & =\frac{(q ; q)_{n}}{(q ; q)_{n-k}} a^{n-k} q^{\binom{k}{2}+k(1+n)} . \tag{1.10}\\
\theta^{k}\left\{(a t ; q)_{\infty}\right\} & =(-t)^{k}(a t ; q)_{\infty} . \tag{1.11}\\
\theta^{k}\left\{\frac{(a t ; q)_{\infty}}{(a v ; q)_{\infty}}\right\} & =v^{k} q^{-\binom{k}{2}}(t / v ; q)_{k} \frac{(a t ; q)_{\infty}}{\left(a v / q^{k} ; q\right)_{\infty}},|a v|<1 . \tag{1.12}
\end{align*}
$$

In 1998, Chen and Liu [4] defined the q-exponential operator $E(b \theta)$ as follows:
Definition 1.7. [4] . The q-exponential operator $E(b \theta)$ is defined as follows:

$$
\begin{equation*}
E(b \theta)=\sum_{n=0}^{\infty} \frac{(b \theta)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \tag{1.13}
\end{equation*}
$$

Chen and Liu proved the following result:
Theorem 1.8. [4] . Let $E(b \theta)$ be defined as in (1.13), then

$$
\begin{align*}
E(b \theta)\left\{(a t ; q)_{\infty}\right\} & =(a t, b t q)_{\infty} . \tag{1.14}\\
E(b \theta)\left\{(a s, a t ; q)_{\infty}\right\} & =\frac{(a s, a t, b s, b t q)_{\infty}}{(a b s t / q ; q)_{\infty}}, \quad|a b s t|<1 . \tag{1.15}
\end{align*}
$$

They used the q-exponential operator $E(b \theta)$ to present an extension for the Askey beta integral.
In 2006, Zhang and Liu [6] used $E(d \theta)$ to prove the following result:
Theorem 1.9. [6] . Let $E(d \theta)$ be defined as in (1.13), then

$$
E(d \theta)\left\{a^{n}(a s ; q)_{\infty}\right\}=a^{n}(a s ; q)_{\infty} \phi_{1}\left(\begin{array}{c}
q^{-n}, q / a s \tag{1.16}\\
0
\end{array} \quad q, d s\right), \quad|d s|<1 .
$$

In 2007, Fang [7] defined the Cauchy operator ${ }_{1} \Phi_{0}\left(\begin{array}{l}b \\ - \\ - \\ \hline\end{array},-c \theta\right)$ as follows:
Definition 1.10. [7] . The Cauchy operator ${ }_{1} \Phi_{0}\left(\begin{array}{l}b \\ ;\end{array},-c \theta\right)$ is defined by

$$
{ }_{1} \Phi_{0}\left(\begin{array}{l}
b \tag{1.17}\\
;
\end{array},-c \theta\right)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}}(-c \theta)^{n} .
$$

Fang proved the following result:
Theorem 1.11. [7] . Let ${ }_{1} \Phi_{0}\left(\begin{array}{l}b \\ \\ ;\end{array},-c \theta\right)$ be defined as in (1.17), then

$$
\begin{equation*}
{ }_{1} \Phi_{0}\binom{b}{-q,-c \theta}\left\{(a s ; q)_{\infty}\right\}=\frac{(b c s, a s ; q)_{\infty}}{(c s ; q)_{\infty}}, \quad|c s|<1 . \tag{1.18}
\end{equation*}
$$

Fang used Cauchy operator ${ }_{1} \Phi_{0}\left(\begin{array}{l}b \\ ;\end{array} q,-c \theta\right)$ to obtain an extension for the q-Chu-Vandermonde identity.

In 2010, Zhang and Yang [8] introduced the finite q-exponential operator with two parameters ${ }_{2} \varepsilon_{1}\left[\begin{array}{l}q^{-N}, v \\ W\end{array} ; q, c \theta\right]$ as follows:
Definition 1.10. [8]. The finite q-exponential operator ${ }_{2} \varepsilon_{1}\left[\begin{array}{l}q^{-N}, v \\ w\end{array} ; q, c \theta\right]$ is defined by

$$
{ }_{2} \varepsilon_{1}\left[\begin{array}{l}
q^{-N}, v \\
w
\end{array} ; q, c \theta\right]=\sum_{n=0}^{\infty} \frac{\left(q^{-N}, v ; q\right)_{n}}{(q, w ; q)_{n}}(c \theta)^{n}
$$

By using this operator, , Zhang and Yang found an extension for q-Chu-Vandermonde summation formula.

In 2010, Liu [1] defined the q^{-1}-Rogers-Szegö polynomial as follows:
Definition 1.12. [1] . The q^{-1}-Rogers-Szegö polynomial $h_{n}\left(a, b \mid q^{-1}\right)$ is defined by

$$
h_{n}\left(a, b \mid q^{-1}\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.19}\\
k
\end{array}\right] q^{k^{2}-n k} a^{k} b^{n-k} .
$$

Liu used the q-difference equation to prove the following:
Theorem 1.13. [1] . Let $h_{n}\left(a, b \mid q^{-1}\right)$ be defined as in (1.19), then

- The generating function for $h_{n}\left(a, b \mid q^{-1}\right)$

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n}\left(a, b \mid q^{-1}\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}=(a t, b t ; q)_{\infty} . \tag{1.20}
\end{equation*}
$$

- Mehler's formula for $h_{n}\left(a, b \mid q^{-1}\right)$

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n}\left(a, b \mid q^{-1}\right) h_{n}\left(c, d \mid q^{-1}\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}=\frac{(a c t, a d t, b c t, b d t ; q)_{\infty}}{\left(a b c d t^{2} / q ; q\right)_{\infty}} \tag{1.21}
\end{equation*}
$$

provided that $\left|a b c d t^{2} / q\right|<1$.
This paper is organized as follows: In section 2, a generalized q-operator ${ }_{r} \Phi_{s}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$ and some of its identities will be definded and studied. In section 3, we define a polynomial $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ and represent it by the operator ${ }_{r} \Phi_{s}$. The generating function and its extension for $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is obtained. In section 4, the Mehler's formula and its extension for $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is derived . while, in section 5, the Rogers formula for $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is constructed. Finally, section 6 is focused on the summary of the results and the conclusions.

2. The Operator ${ }_{r} \Phi_{s}$ and it's Identities

In this section, we define the generalized q-operator ${ }_{r} \Phi_{s}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{\mathrm{s}}\end{array} ; q,-c \theta\right)$ as follows:
Definition 2.1. The generalized q-operator $\mathrm{r}_{\mathrm{r}} \Phi_{\mathrm{s}}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$ is defined by

$$
{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \tag{2.1}\\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{k}} \frac{(-c \theta)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r}
$$

When $r=s=0$, we get the q-exponential operator $E(c \theta)$ defined by Chen and Liu [4] in 1998. Also when $r=1, s=0, a_{1}=b$, we obtain the q-exponential operator ${ }_{1} \Phi_{0}\left(\begin{array}{c}b \\ ; \\ - \\ -\end{array},-c \theta\right)$ defined by Fang [7] in 2007. And when $r=2, s=1, a_{1}=q^{-N}, a_{2}=v, b_{1}=w$ we obtain the
finite q-exponential operator with two parameters ${ }_{2} \varepsilon_{1}\left[\begin{array}{l}q^{-N}, v \\ \\ \end{array} \quad ; q, c \theta\right]$ defined by Zhang and Yang [8] in 2010. Finally, when $r=2, s=1, a_{1}=u, a_{2}=v, b_{1}=w$, we get the generalized q-exponential operator with three parameters $\mathbb{E}\left[\begin{array}{l}u, v \\ w\end{array} q ; c \theta\right]$ defined by Li and Tan [9] in 2016.

In this paper, we will denote to $\frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{k}}$ by W_{k}. Then the generalized q-operator ${ }_{r} \Phi_{s}$ can be written as follows:

$$
{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \tag{2.2}\\
b_{1}, \ldots, b_{s}
\end{array} q,-c \theta\right)=\sum_{k=0}^{\infty} W_{k} \frac{(-c \theta)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} .
$$

Theorem 2.2. Let ${ }_{\mathrm{r}} \Phi_{\mathrm{s}}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ ; q,-c \theta \\ b_{1}, \ldots, b_{s}\end{array}\right)$ be defined as in (2.2), then

$$
\begin{align*}
& { }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} q,-c \theta\right)\left\{(a u, a t ; q)_{\infty}\right\}=(a u, a t ; q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} W_{k+j} \frac{(c t)^{k}}{(q ; q)_{k}} \\
& \quad \times\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \frac{(q / a t ; q)_{j}}{(q ; q)_{j}}(a c t u / q)^{j}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r} q^{k j(s-r)} . \tag{2.3}
\end{align*}
$$

Proof. From the definition of the operator ${ }_{r} \Phi_{s}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$ and by using Leibniz rule (1.9), we have

$$
\begin{aligned}
& { }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{(a u, a t ; q)_{\infty}\right\} \\
& =\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q, q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \theta^{k}\left\{(a u, a t ; q)_{\infty}\right\} \\
& =\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q, q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \sum_{j=0}^{k} k j \theta^{j}\left\{(a u ; q)_{\infty}\right\} \theta^{k-j}\left\{\left(a t q^{-j} ; q\right)_{\infty}\right\} \\
& =\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q, q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \sum_{j=0}^{k} \frac{(q, q)_{k}}{(q, q)_{j}(q, q)_{k-j}}(-u)^{j}(a u ; q)_{\infty} \\
& \quad \times\left(-t q^{-j}\right)^{k-j}\left(a t q^{-j} ; q\right)_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q, q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \sum_{j=0}^{k} \frac{(q, q)_{k}}{(q, q)_{j}(q, q)_{k-j}}(-u)^{j}(a u ; q)_{\infty} \\
& \times(-t)^{k-j} q^{-k j+j^{2}}(-a t)^{j} q^{-j} 2^{-j}(q \\
& / a t ; q)_{j}(a t ; q)_{\infty} \quad \text { (by using (1.3)) } \\
& =(a t, a u ; q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} W_{k+j} \frac{(-c)^{k+j}}{(q, q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{1+s-r} q^{k j(1+s-r)} \\
& \times(-u)^{j}(-t)^{k} q^{-k j-j^{2}+j^{2}}(-a t)^{j} q^{-j} 2_{2}^{-j} \frac{(q / a t ; q)_{j}}{(q, q)_{j}} \\
& =(a u, a t ; q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} W_{k+j} \frac{(c t)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \frac{(q / a t ; q)_{j}}{(q ; q)_{j}}(a c t u / q)^{j}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r} \\
& \times q^{k j(s-r)} \text {. }
\end{aligned}
$$

By setting $r=s=0$ in (2.3), we get Theorem 2.11. obtained in Chen and Liu [4] (equation (1.15)).

Putting $u=0$ in (2.3), we get the following corollary:
Corollary 1. Let $\mathrm{r}_{\mathrm{r}} \Phi_{\mathrm{s}}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$ be defined as in (2.2), then

$$
{ }_{r} \Phi_{S}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \tag{2.4}\\
b_{1}, \ldots, b_{s}
\end{array} q,-c \theta\right)\left\{(a t ; q)_{\infty}\right\}=(a t ; q)_{\infty} \sum_{k=0}^{\infty} W_{k} \frac{(c t)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r}
$$

Setting $r=s=0$ in (2.4), we get Theorem 2.9. obtained by Chen and Liu [4] (equation (1.14)). Setting $r=1$ and $s=0$ in (2.4), we get Theorem 1.3. obtained by Fang [7] (equation (1.18)).

Theorem 2.3. Let ${ }_{\mathrm{r}} \Phi_{\mathrm{S}}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$ be defined as in (2.2) and $n \in \mathbb{Z}^{+}$, then

$$
{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{n}(a t, q)_{\infty}\right\}=a^{n}(a t, q)_{\infty} \sum_{j=0}^{n} \sum_{k=0}^{\infty} W_{k+j} \frac{(c t)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r}
$$

$$
\begin{equation*}
\times \frac{\left(q^{-n}, q / a t ; q\right)_{j}}{(q ; q)_{j}}(c t)^{j}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r} q^{k j(s-r)} \tag{2.5}
\end{equation*}
$$

Proof. From (2.2), we have

$$
{ }_{r} \Phi_{s}\binom{a_{1}, \ldots, a_{r}}{b_{1}, \ldots, b_{s} ; q,-c \theta}\left\{a^{n}(a t, q)_{\infty}\right\}=\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \theta^{k}\left\{a^{n}(a t, q)_{\infty}\right\} .
$$

By using Leibniz rule (1.9), we have

$$
\begin{aligned}
& { }_{r} \Phi_{\mathrm{s}}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{n}(a t, q)_{\infty}\right\} \\
& =\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \sum_{j=0}^{k} k j \theta^{j}\left\{a^{n}\right\} \theta^{k-j}\left\{\left(a t q^{-j} ; q\right)_{\infty}\right\} \\
& =\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \sum_{j=0}^{k} \frac{(q ; q)_{k}}{(q ; q)_{j}(q ; q)_{k-j}}(-1)^{j} a^{n-j} q^{j}\left(q^{-n} ; q\right)_{j} \\
& \times \theta^{k-j}\left\{\left(a t q^{-j} ; q\right)_{\infty}\right\} \\
& =\sum_{k=0}^{\infty} W_{k}(-c)^{k}\left[(-1)^{k} q^{\left.\binom{k}{2}\right]^{1+s-r}} \sum_{j=0}^{k} \frac{1}{(q ; q)_{j}(q ; q)_{k-j}}(-1)^{j} a^{n-j} q^{j}\left(q^{-n} ; q\right)_{j}\left(-t q^{-j}\right)^{k-j}\right. \\
& \times\left(a t q^{-j} ; q\right)_{\infty} \quad \text { (by using (1.11)) } \\
& =\sum_{j=0}^{n} \sum_{k=0}^{\infty} W_{k+j}(-c)^{k+j}\left[(-1)^{k+j} q^{\binom{k+j}{2}}\right]^{1+s-r} \frac{1}{(q ; q)_{j}(q ; q)_{k}}(-1)^{j} a^{n-j} q^{j}\left(q^{-n} ; q\right)_{j}\left(-t q^{-j}\right)^{k} \\
& \times(-a t)^{\mathfrak{j}} q^{-j}{ }^{-j}(q / a t ; q)_{j}(a t ; q)_{\infty} \quad \text { (by using (1.3)) } \\
& =a^{n}(a t, q)_{\infty} \sum_{j=0}^{n} \sum_{k=0}^{\infty} W_{k+j} \frac{(c t)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \frac{\left(q^{-n}, q / a t ; q\right)_{j}}{(q ; q)_{j}}(c t)^{j}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r} \\
& \times q^{k j(s-r)} \text {. (by using (1.5)) } \\
& \text { (by using (1.1) and (1.10)) } \\
& \text { (by using (1.3)) }
\end{aligned}
$$

Setting $r=s=0$ in (2.5), we get Corollary 2.4. obtained in Zhang and Liu [6] (equation(1.16)).

3. The Generating Function for $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$

In this section we define a polynomial $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$. By using the operator
${ }_{r} \Phi_{s}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$, we get the generating function and its extension for the polynomials K_{n}. We give some special values to the parameters in the generating function and its extension for $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ to obtain the generating function and its extension for the q^{-1}-Rogers-Szegö polynomials $h_{n}\left(a, b \mid q^{-1}\right)$.

Definition 3.1. The polynomial $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is defined by

$$
K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{3.1}\\
k
\end{array}\right] W_{k} c^{k}\left[(-1)^{k} q^{\left.\binom{k}{2}\right]^{2+s-r} q^{k(1-n)} a^{n-k}, ~ \text {, }}\right.
$$

where $W_{k}=\frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{k}}$.
Setting $r=s=0, a=b, c=a$ in (3.1), we get the q^{-1}-Rogers-Szegö polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ (2.12) defined by Liu [1] (equation (1.19)).

Theorem 3.2. Let the polynomials $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ be defined as in (3.1), then

$$
{ }_{r} \Phi_{s}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \tag{3.2}\\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{n}\right\}=K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)
$$

Proof.

$$
\begin{aligned}
& { }_{r} \Phi_{S}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} q,-c \theta\right)\left\{a^{n}\right\} \\
& \quad=\sum_{k=0}^{\infty} W_{k} \frac{(-c \theta)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r}\left\{a^{n}\right\} \\
& \\
& =\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \theta^{k}\left\{a^{n}\right\} \\
& \quad=\sum_{k=0}^{\infty} W_{k} \frac{(-c)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\left.\binom{k}{2}\right]^{1+s-r} \frac{(q ; q)_{n}}{(q ; q)_{n-k}} a^{n-k} q^{\binom{k}{2}-n k+k}}\right. \\
& \quad=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] W_{k} c^{k}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{2+s-r} q^{k(1-n)} a^{n-k} \\
& \quad=K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) .
\end{aligned}
$$

Theorem 3.3. (The generating function for $\left.K_{n}\right)$. Let $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ be defined as in (3.2), then

$$
\sum_{n=0}^{\infty} K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}=(a u ; q)_{\mathrm{r}} \Phi_{\mathrm{s}}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \tag{3.3}\\
b_{1}, \ldots, b_{s}
\end{array} q, c u\right),
$$

provided that the series is absolutely convergent $\forall c u \in \mathbb{C}$ if $s>r-1, c u=0$ if $s<r-$ 1 and $|c u|<1$ if $s=r-1$.

Proof.

$$
\begin{align*}
& \sum_{n=0}^{\infty} K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& =\sum_{n=0}^{\infty}{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{n}\right\} \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \tag{3.2}\\
& ={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}(a u)^{n}\right\} \\
& ={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{(a u ; q)_{\infty}\right\} \tag{1.7}\\
& =(a u ; q)_{\infty} \sum_{k=0}^{\infty} W_{k} \frac{(c u)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \tag{2.4}\\
& =(a u ; q)_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q, c u\right) \text {. }
\end{align*}
$$

Setting $\mathrm{r}=s=0, a=b, c=a$ in (3.3) we obtain the generating function for the polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ (2.13) obtained by Liu [1] (equation (1.20)).

Theorem 3.4. (Extension of the generating function for K_{n}).
Let $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ be defined as in (3.2), then
$\sum_{n=0}^{\infty} K_{n+l}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}=a^{l}(a u ; q)_{\infty}$
$\times \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{\left(q^{-l}, q / a u ; q\right)_{j}}{(q ; q)_{j}}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}(c u)^{j} W_{i+j} \frac{(c u)^{i}}{(q ; q)_{i}}\left[(-1)^{i} q^{\binom{i}{2}}\right]^{1+s-\mathrm{r}} q^{i j(s-r)}$.
Proof.
$\sum_{n=0}^{\infty} K_{n+l}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}$

$$
\begin{align*}
& =\sum_{n=0}^{\infty} r \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{l+n}\right\} \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& ={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{l} \sum_{n=0}^{\infty} \frac{(-1)^{n}(a u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}\right\} \\
& ={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{l}(a u ; q)_{\infty}\right\} \\
& =a^{l}(a u ; q)_{\infty} \sum_{j=0}^{l} \sum_{i=0}^{\infty} \frac{\left(q^{-l}, q / a u ; q\right)_{j}}{(q ; q)_{j}}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}(c u)^{j} W_{i+j} \frac{(c u)^{i}}{(q ; q)_{i}} \\
& \times\left[(-1)^{i} q^{i}\right]^{1+s-r} q^{i j(s-r)} \text {. } \tag{2.5}
\end{align*}
$$

Setting $r=s=0, a=b, c=a$ in (3.4) we obtain an extension of the generating function for the polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ as follows:

$$
\begin{aligned}
\sum_{n=0}^{\infty} h_{n+l}\left(a, b \mid q^{-1}\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} & =b^{l}(b u ; q)_{\infty} \sum_{j=0}^{l} \sum_{i=0}^{\infty} \frac{\left(q^{-l}, q / b u ; q\right)_{j}}{(q ; q)_{j}}(a u)^{j} \frac{(a u)^{i}}{(q ; q)_{i}}(-1)^{i} q^{\binom{i}{2}} \\
& =b^{l}(b u ; q)_{\infty} \sum_{j=0}^{l} \frac{\left(q^{-l}, q / b u ; q\right)_{j}}{(q ; q)_{j}}(a u)^{j} \sum_{i=0}^{\infty} \frac{(a u)^{i}}{(q ; q)_{i}}(-1)^{i} q^{\binom{i}{2}} \\
& =b^{l}(a u, b u ; q)_{\infty} \sum_{j=0}^{l} \frac{\left(q^{-l}, q / b u ; q\right)_{j}}{(q ; q)_{j}}(a u)^{j} .
\end{aligned}
$$

4. Mehler's Formula for $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$

In the section, we will derive Mehler's formula and its extension for the polynomials K_{n} by using the operator ${ }_{r} \Phi_{s}$. We give some special values to the parameters in the Mehler's formula and its extension for K_{n} to obtain Mehler's formula and its extension for the q^{-1}-Rogers-Szegö polynomials $h_{n}\left(a, b \mid q^{-1}\right)$.

Theorem 4.1. (Mehler's formula for $\left.K_{n}\right)$. Let $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ be defined as in (3.2), then
$\sum_{n=0}^{\infty} K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s^{\prime}}, c^{\prime} ; a^{\prime} ; q\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}$

$$
\begin{align*}
= & \left(a u a^{\prime} ; q\right)_{\infty} \sum_{k=0}^{\infty} W_{k} \frac{\left(c u a^{\prime}\right)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{\left(q^{-k}, q / a^{\prime} a u ; q\right)_{j}}{(q ; q)_{j}} \\
& \times\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}(c a u)^{j} W_{i+j} \frac{(c a u)^{\mathrm{i}}}{(q ; q)_{i}}\left[(-1)^{i} q^{\binom{i}{2}}\right]^{1+s-r} q^{i j(s-r)}, \tag{4.1}
\end{align*}
$$

provided that \mid cua' $\mid<1$.

$$
\begin{align*}
& \text { Proof. } \\
& \sum_{n=0}^{\infty} K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) K_{n}\left(a_{1,}, \ldots, a_{r} ; b_{1 \prime}, \ldots, b_{s^{\prime}}, c^{\prime} ; a^{\prime} ; q\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& =\sum_{n=0}^{\infty} K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)_{r} \Phi_{s}\binom{a_{1^{\prime}}, \ldots, a_{r^{\prime}}}{b_{1^{\prime}, \ldots, b_{s^{\prime}}} ; q,-c^{\prime} \theta}\left\{\left(a^{\prime}\right)^{n}\right\} \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& ={ }_{r} \Phi_{s}\binom{a_{1^{\prime}}, \ldots, a_{r^{\prime}}}{b_{1^{\prime}, \ldots, b_{s^{\prime}}} ; q,-c^{\prime} \theta}\left\{\sum_{n=0}^{\infty} K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \times \frac{\left(-a^{\prime} u\right)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}\right\} \\
& \left.={ }_{r} \Phi_{s}\left(\begin{array}{c}
a_{1^{\prime}}, \ldots, a_{r^{\prime}} \\
b_{1^{\prime}}, \ldots, b_{s^{\prime}}
\end{array} ; q,-c^{\prime} \theta\right)\left\{(\text { aua'; })_{\infty}\right)_{\infty} \Phi_{s}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q, c u a^{\prime}\right)\right\} \tag{3.3}\\
& ={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1^{\prime}}, \ldots, a_{r^{\prime}} \\
\\
b_{1^{\prime}}, \ldots, b_{s^{\prime}}
\end{array} ; q,-c^{\prime} \theta\right)\left\{\left(a u a^{\prime} ; q\right)_{\infty} \sum_{k=0}^{\infty} W_{k} \frac{\left(c u a^{\prime}\right)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r}\right\} \\
& =\sum_{k=0}^{\infty} W_{k} \frac{(c u)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r}{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1 \prime}, \ldots, a_{r^{\prime}} \\
\left.b_{1^{\prime}, \ldots, b_{S^{\prime}}} ; q,-c^{\prime} \theta\right)\left\{\left(a^{\prime}\right)^{k}\left(a u a^{\prime} ; q\right)_{\infty}\right\}, ~
\end{array}\right. \\
& =\left(a u a^{\prime} ; q\right)_{\infty} \sum_{k=0}^{\infty} W_{k} \frac{\left(c u a^{\prime}\right)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} \sum_{j=0}^{k} \sum_{i=0}^{\infty} \frac{\left(q^{-k}, q / a^{\prime} a u ; q\right)_{j}}{(q ; q)_{j}} \\
& \times\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}\left(c^{\prime} a u\right)^{j} W_{i+j} \frac{\left(c^{\prime} a u\right)^{i}}{(q ; q)_{i}}\left[(-1)^{i} q^{\left.\binom{i}{2}\right]^{1+s-r} q^{i j(s-r)} .}\right.
\end{align*}
$$

Setting $r=s=0, c^{\prime}=c, a=b, \mathrm{a}^{\prime}=d, c=a$ and $u=t$ in equation (4.1) we get Mehler's formula for the polynomials $h_{n}\left(a, b \mid q^{-1}\right)(2.14)$ obtained by Liu [1] (equation (1.21)) as we see in the following corollary:

Corollary 2. (Mehler's formula for $\left.h_{n}\left(a, b \mid q^{-1}\right)\right)$. Let $h_{n}\left(a, b \mid q^{-1}\right)$ be defined as in (1.19), then

$$
\sum_{n=0}^{\infty} h_{n}\left(a, b \mid q^{-1}\right) h_{n}\left(c, d \mid q^{-1}\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}=\frac{(a c t, a d t, b c t, b d t ; q)_{\infty}}{\left(a b c d t^{2} / q ; q\right)_{\infty}}
$$

provided that $\left|a b c d t^{2} / q\right|<1$.

Proof. Setting $r=s=0, c^{\prime}=c, a=b, a^{\prime}=d, c=a$ and $u=t$ in equation (4.1) we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} h_{n}\left(a, b \mid q^{-1}\right) h_{n}\left(c, d \mid q^{-1}\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& =(b t d ; q)_{\infty} \sum_{k=0}^{\infty} \frac{(a t d)^{k}}{(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} \sum_{j=0}^{k} \sum_{i=0}^{\infty} \frac{\left(q^{-k}, q / d b u ; q\right)_{j}}{(q ; q)_{j}}(c b t)^{j} \frac{(c b t)^{i}}{(q ; q)_{i}}(-1)^{\mathrm{i}} q^{\binom{i}{2}} \\
& =(b t d ; q)_{\infty} \sum_{k=0}^{\infty} \frac{(a t d)^{k}}{(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} \sum_{j=0}^{k} \frac{(q / d t b ; q)_{j}}{(q ; q)_{j}}(-1)^{j} q^{\binom{j}{2}-k j} \frac{(q ; q)_{k}}{(q ; q)_{k-j}}(c b t)^{j}(c b t ; q)_{\infty} \\
& =(b t d, c b t ; q)_{\infty} \sum_{j=0}^{\infty} \frac{(q / d b t ; q)_{j}}{(q ; q)_{j}}(c b t)^{\mathrm{j}}(-1)^{j} q^{\binom{j}{2}-j^{2}} \sum_{k=0}^{\infty} \frac{(d t a)^{k+j}}{(q ; q)_{k}}(-1)^{k+j} q^{\binom{k+j}{2}-k j} \\
& =(b t d, c b t ; q)_{\infty} \sum_{j=0}^{\infty} \frac{(q / d b t ; q)_{j}}{(q ; q)_{j}}(c b t)^{j}(a t d)^{j} q^{-j} \sum_{k=0}^{\infty} \frac{(d c u)^{k}}{(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} \tag{1.5}\\
& =(b t d, c b t ; q)_{\infty} \frac{(c a t ; q)_{\infty}}{\left(a c b d t^{2} / q ; q\right)_{\infty}}(a d t ; q)_{\infty} \\
& =\frac{(b t d, b t c, a t c, a t d ; q)_{\infty}}{\left(a c b d t^{2} / q ; q\right)_{\infty}} \text {. } \\
& \text { (by using (1.6) and (1.7)) }
\end{align*}
$$

Theorem 4.2. (Extension of Mehler's formula for $\left.K_{n}\right)$. Let $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ be defined as in (3.1), then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} K_{n+m}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) K_{n}\left(a_{1,}, \ldots, a_{r,} ; b_{1}, \ldots, b_{s,}, c^{\prime} ; a^{\prime} ; q\right) \frac{(-u)^{n} q^{\binom{k}{2}}}{(q ; q)_{n}} \\
& =a^{m} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{\left(q^{-m}, q / a a^{\prime} u ; q\right)_{j}}{(q ; q)_{j}}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}(c u)^{j} W_{i+j} \frac{(c u)^{i}}{(q ; q)_{i}}\left[(-1)^{i} q^{\left.\binom{i}{2}\right]^{1+s-r}}\right. \\
& \quad \times q^{i j(s-r)}\left(a^{\prime}\right)^{i+j}\left(a^{\prime} a u, q\right)_{\infty} \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{\left(q^{-(i+j)}, q / a^{\prime} a u ; q\right)_{l}}{(q ; q)_{l}}\left[(-1)^{l} q^{\left.\binom{l}{2}\right]^{s-r}\left(c^{\prime} a u\right)^{l} W_{k+l}}\right.
\end{aligned}
$$

$$
\begin{equation*}
\times \frac{\left(c^{\prime} a u\right)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} q^{k l(s-r)} . \tag{4.2}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} K_{n+m}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) K_{n}\left(a_{1,}, \ldots, a_{r} ; b_{1,}, \ldots, b_{s \prime}, c^{\prime} ; a^{\prime} ; q\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& =\sum_{n=0}^{\infty} K_{n+m}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)_{r} \Phi_{s}\left(\begin{array}{c}
a_{1^{\prime}}, \ldots, a_{r^{\prime}} \\
; q,-c^{\prime} \theta \\
b_{1^{\prime}, \ldots, b_{s^{\prime}}}
\end{array}\right)\left\{\left(a^{\prime}\right)^{n}\right\}
\end{aligned}
$$

$$
\times \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \quad \text { (by using }
$$

$$
={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1^{\prime}}, \ldots, a_{r^{\prime}} \\
b_{1^{\prime}}, \ldots, b_{s^{\prime}}
\end{array} q,-c^{\prime} \theta\right)\left\{\sum_{n=0}^{\infty} K_{n+m}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \frac{\left(-a^{\prime} u\right)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}\right\}
$$

$$
={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1^{\prime}}, \ldots, a_{r^{\prime}} \\
\\
b_{1^{\prime}}, \ldots, b_{s^{\prime}}
\end{array} ;--c^{\prime} \theta\right)\left\{a^{m}\left(a a^{\prime} u ; q\right)_{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{\left(q^{-m}, q / a a^{\prime} u ; q\right)_{j}}{(q ; q)_{j}}\right.
$$

$$
\left.\times\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}\left(c u a^{\prime}\right)^{j} W_{i+j} \frac{\left(c u a^{\prime}\right)^{i}}{(q ; q)_{i}}\left[(-1)^{i} q^{\binom{i}{2}}\right]^{1+s-r} q^{i j(s-r)}\right\} \quad \text { (by using (3.4)) }
$$

$$
=a^{m} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{\left(q^{-m}, q / a a^{\prime} u ; q\right)_{j}}{(q ; q)_{j}}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}(c u)^{j} W_{i+j} \frac{(c u)^{i}}{(q ; q)_{i}}\left[(-1)^{i} q^{\binom{i}{2}}\right]^{1+s-r} q^{i j(s-r)}
$$

$$
\times{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1^{\prime}}, \ldots, a_{r^{\prime}} \\
\\
b_{1^{\prime}}, \ldots, b_{s^{\prime}}
\end{array} q,-c^{\prime} \theta\right)\left\{\left(a^{\prime}\right)^{i+j}\left(a a^{\prime} u ; q\right)_{\infty}\right\}
$$

$$
=a^{m} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{\left(q^{-m}, q / a a^{\prime} u ; q\right)_{j}}{(q ; q)_{j}}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r}(c u)^{j} W_{i+j} \frac{(c u)^{i}}{(q ; q)_{i}}\left[(-1)^{i} q^{\binom{i}{2}}\right]^{1+s-r} q^{i j(s-r)}
$$

$$
\times\left(a^{\prime}\right)^{i+j}\left(a^{\prime} a u, q\right)_{\infty} \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{\left(q^{-(i+j)}, q / a^{\prime} a u ; q\right)_{l}}{(q ; q)_{l}}\left[(-1)^{l} q^{\binom{l}{2}}\right]^{s-r}\left(c^{\prime} a u\right)^{l} W_{k+l}
$$

$$
\begin{equation*}
\times \frac{\left(c^{\prime} a u\right)^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} q^{k l(s-r)} \tag{2.5}
\end{equation*}
$$

Setting $r=s=0, a=b, c=a, c^{\prime}=c$ and $a^{\prime}=d$ in equation (4.2) we get an extension of Mehler's formula for the polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ as we see in the following corollary:

Corollary 3. (Extension of Mehler's formula for $h_{n}\left(a, b \mid q^{-1}\right)$. Let $h_{n}\left(a, b \mid q^{-1}\right)$ be defined as in (1.19), then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} h_{n+m}\left(a, b \mid q^{-1}\right) h_{n}\left(c, d \mid q^{-1}\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& \quad=b^{m}(a u d, c b u, d b u, q)_{\infty} \sum_{j=0}^{\infty} \frac{\left(q^{-m}, q / b d u ; q\right)_{j}}{(q ; q)_{j}}(a u d / q)^{j} \sum_{l=0}^{\infty} \frac{\left(q^{-(i+j)}, q / d b u ; q\right)_{l}}{(q ; q)_{l}}(c b u)^{l}
\end{aligned}
$$

Proof.

Setting $r=s=0, a=b, c=a, c^{\prime}=c$ and $a^{\prime}=d$ in equation (4.2) we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} h_{n+m}\left(a, b \mid q^{-1}\right) h_{n}\left(c, d \mid q^{-1}\right) \frac{(-u)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \\
& =b^{m}(d b u, q)_{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{\left(q^{-m}, q / b d u ; q\right)_{j}}{(q ; q)_{j}}(a u d / q)^{j} \frac{(a u d)^{i}}{(q ; q)_{i}}(-1)^{i} q^{\binom{i}{2}} \\
& \quad \times \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{\left(q^{-(i+j)}, q / d b u ; q\right)_{l}}{(q ; q)_{l}}(c b u)^{l} \frac{(c b u)^{k}}{(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} \\
& =b^{m}(d b u, q)_{\infty} \sum_{j=0}^{\infty} \frac{\left(q^{-m}, q / b d u ; q\right)_{j}}{(q ; q)_{j}}(a u d / q)^{j} \sum_{i=0}^{\infty} \frac{(a u d)^{i}}{(q ; q)_{i}}(-1)^{i} q^{\binom{i}{2}} \\
& \quad \times \sum_{l=0}^{\infty} \frac{\left(q^{-(i+j)}, q / d b u ; q\right)_{l}}{(q ; q)_{l}}(c b u)^{l} \sum_{k=0}^{\infty} \frac{(c b u)^{k}}{(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} \\
& =b^{m}(a u d, c b u, d b u, q)_{\infty} \sum_{j=0}^{\infty} \frac{\left(q^{-m}, q / b d u ; q\right)_{j}}{(q ; q)_{j}}(a u d / q)^{j} \sum_{l=0}^{\infty} \frac{\left(q^{-(i+j)}, q / d b u ; q\right)_{l}}{(q ; q)_{l}}(c b u)^{l} . \tag{1.7}
\end{align*}
$$

5. Rogers Formula for $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$

We will derive, in this section, Roger's formula for the polynomials K_{n} by using the operator ${ }_{r} \Phi_{s}$. We give some special values to the parameters in Rogers formula for $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ to obtain Rogers formula for the q^{-1}-Rogers-Szegö polynomials
$h_{n}\left(a, b \mid q^{-1}\right)$.
Theorem 5.1. (Rogers formula for $\left.K_{n}\right)$ Let $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ be defined as in (3.2), then

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} K_{n+m}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \frac{(-u)^{m} q^{\binom{m}{2}}}{(q ; q)_{m}} \\
&=(a t, a u ; q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{(q / a u ; q)_{j}}{(q ; q)_{j}}(a c t u / q)^{j}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r} W_{k+j} \frac{(c u)^{k}}{(q ; q)_{k}} \\
& \quad \times\left[(-1)^{k} q^{(k)}\right]^{1+s-r} q^{k j(s-r)}, \tag{5.1}
\end{align*}
$$

provided that $|\operatorname{actu} / q|<1$.
Proof.

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} K_{n+m}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \frac{(-u)^{m} q^{\binom{m}{2}}}{(q ; q)_{m}} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} r \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{a^{n+m}\right\} \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \frac{(-u)^{m} q^{\binom{m}{2}}}{(q ; q)_{m}} \\
& ={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{\sum_{n=0}^{\infty} \frac{(-1)^{n}(a t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \sum_{m=0}^{\infty} \frac{(-1)^{m}(a u)^{m} q^{\binom{m}{2}}}{(q ; q)_{\mathrm{m}}}\right\} \\
& ={ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q,-c \theta\right)\left\{(a t ; q)_{\infty}(a u ; q)_{\infty}\right\} . \\
& =(a t, a u ; q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{(q / u a ; q)_{j}}{(q ; q)_{j}}(a c t u / q)^{j}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{s-r} W_{k+j} \frac{(c u)^{k}}{(q ; q)_{k}} \\
& \times\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} q^{k j(s-r) .} \tag{2.3}
\end{align*}
$$

Setting $r=s=0, a=b$ and $c=a$ in equation (5.1) we obtain Rogers formula for the polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ as we see in the following corollary:
Corollary 4. (Rogers formula for $h_{n}\left(a, b \mid q^{-1} ; q\right)$). Let $h_{n}\left(a, b \mid q^{-1}\right)$ be defined as in (1.19), then

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m}\left(a, b \mid q^{-1} ; q\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \frac{(-u)^{m} q^{\binom{m}{2}}}{(q ; q)_{m}}=\frac{(a t, a u, b t, b u ; q)_{\infty}}{(a b t u / q ; q)_{\infty}}
$$

provided that $|a b t u / q|<1$.

Proof.

Setting $r=s=0, a=b$ and $c=a$ in equation (5.1) we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m}\left(a, b \mid q^{-1} ; q\right) \frac{(-t)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} \frac{(-u)^{m} q^{\binom{m}{2}}}{(q ; q)_{m}} \\
& =(b t, b u ; q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{(q / b u ; q)_{j}}{(q ; q)_{j}}(b a t u / q)^{i} \frac{(a u)^{k}}{(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} \\
& =(b t, b u ; q)_{\infty} \sum_{j=0}^{\infty} \frac{(q / a u ; q)_{j}}{(q ; q)_{j}}(b a t u / q)^{j} \sum_{k=0}^{\infty} \frac{(a u)^{k}}{(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} \\
& =\frac{(b t, a t, b u, a u ; q)_{\infty}}{(b a t u / q ; q)_{\infty}} . \quad \text { (by using (1.6) }
\end{aligned}
$$

(by using (1.6) and (1.7))

6. Conclusions

This paper devoted to study a new generalized q-operator ${ }_{r} \Phi_{s}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$. Also, a new polynomial $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is constructed. The generating function and its extension for $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is studied. Also, the Mehler's formula and its extension for $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is investigated. While, the Rogers formula for $K_{n}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}, c ; a ; q\right)$ is constructed. In order to explore the results, one can imposing some special values of the parameters. So, by setting $r=s=0, a=b, c=a$ in the generating function and its extension for $K_{n}\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$, the generating function and its extension for the q^{-1}-Rogers-Szegö polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ is obtained directly. Also, by setting $\quad r=s=0, \quad a=b, \quad c=a$ in Mehler's formula and its extension for $K_{n}\left(a_{1}, \ldots, \mathrm{a}_{r}, b_{1}, \ldots, b_{s}, c ; a ; q\right)$, the Mehler's formula and its extension for the polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ is achieved directly. Finaly, by setting $r=s=0, a=b, c=a$ in Rogers formula for $K_{n}\left(a_{1}, \ldots, a_{r}, \mathrm{~b}_{1}, \ldots, b_{s}, c ; a ; q\right)$, the Rogers formula for the polynomials $h_{n}\left(a, b \mid q^{-1}\right)$ is created.

References

[1] Z.-G. Liu, Two q-difference equations and q-operator identities, J. Difference Equ. Appl. 16 (2010) 1293-1307.
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, $2^{\text {nd }}$ ed., Cambridge University Press,

Cambridge, MA, 2004.
[3] S. Roman, More on the umbral calculus, with emphasis on the q-umbral caculus, J. Math. Anal. Appl. 107 (1985) 222-254.
[4] W.Y.C. Chen, Z.G. Liu, Parameter augmentation for basic hypergeometric series, I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds., B.E. Sagan and R.P. Stanley, Birkhäuser, Boston, (1998) 111-129.
[5] Z. Z. Zhang, J. Wang, Two operator identities and their applications to terminating basic hypergeometric series and q-integrals, J. Math. Anal. Appl. 312 (2005) 653-665.
[6] Z. Z. Zhang, M. Liu, Application of Operator identities to the multiple q-binomial theorem and q-Gauss summation theorem, Discrete Math. 306 (2006) 1424-1437.
[7] J.P. Fang, q-Differential operator identities and applications, J. Math. Anal. Appl. 332 (2007) 1393-1407.
[8] Z. Z. Zhang, J. Z. Yang, Finite q-exponential operators with two parameters and their applications, ACTA MATHEMATICA SINICA, Chinese Series 53 (2010) 1007-1018. (in Chinese)
[9] N. N. Li, W. Tan, Two generalized q-exponential operators and their applications, Advances in difference equations 53 (2016) 1-14.

K_{n} المؤثر
 حسام لوتي سعد, صادق ماجد خلف

قسم الرياضيات ، كلية اللعوم ، جامعة البصرة ، البراق

المستلخص

 اعتبار هذا العمل بمثابة تعميم لعمل Liu [1] عن طريق فرض بحض القيم الخاصة للمعلمات في نتائجنا. لذلك يمكن الحصول على متعددات حدود روجرز- زيجو-1 $h_{n}\left(a, b \mid q^{-1}\right) q^{-1}$ مباشرة.

