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Abstract
K-Means is a popular cluster analysis method which aims to partition a number of data points into K clusters. It has been
successfully applied to a number of problems. However, the efficiency of K-Means depends on its initialization of cluster centers.
Different swarm intelligence techniques are applied to clustering problem for enhancing the performance. In this work a hybrid
clustering approach based on K-means and Ant Lion Optimization has been considered for optimal cluster analysis. Ant Lion
Optimization (ALO) is a stochastic global optimization model. The performance of the proposed algorithm is compared against the
performance of K-Means, KMeans-PSO, KMeans-FA, DBSCAN and Revised DBSCAN clustering methods based on different
performance metrics. Experimentation is performed on eight datasets, for which the statistical analysis is carried out. The obtained
results indicate that the hybrid of K-Means and Ant Lion Optimization method performs preferably better than the other three
algorithms in terms of sum of intracluster distances and F-measure.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of University of Kerbala. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Clustering is a process of grouping a set of objects
based on some similarity measure. Each group of
partitioned objects is known as a cluster. The parti-
tioning is performed by clustering algorithms. Hence,
clustering is advantageous because it creates the pos-
sibility of obtaining previously unknown groups within
the same data. Data clustering is an effective method
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for discovering structure in data sets. Some clustering
methods partition objects so that there is no particular
boundary among the clusters, whereas some other
methods partition objects into mutually exclusive
clusters. Also, the distance between two objects is
considered as the similarity criteria by some methods.

Clustering algorithms can be categorised into par-
titioning methods, hierarchical methods, grid based
methods and density based methods [1]. Different
factors that affect the results of clustering are number
of clusters to be formed in a data set, clustering ten-
dency and quality of clustering. Accessing clustering
tendency determines whether a non-random structure
exists in the data. The existence of a non-random
structure in a data set results in meaningful cluster
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analysis. Determining the number of clusters to be
formed in a data set is important for few clustering
methods in which the number of clusters is used as
parameter. To measure the quality of clustering a
number of metrics are used. Some methods measure
how well the clusters fit the data set, while others
measure how well the clusters match the ground truth.

K-Means is one of the well-known partitioned
clustering algorithms. Its popularity is due to its
simplicity and computational efficiency [1,2]. How-
ever, the K-Means algorithm is sensitive to the initial
centroids, which is the drawback of the algorithm
[3,4,11]. When the initial centroids are changed, then
the algorithm gives various solutions. Moreover, the K-
Means has a local optima problem. Nowadays, re-
searchers are applying the nature based optimization
techniques with clustering algorithms to obtain better
clusters and overcome the problems of classical data
clustering algorithms. Wang and Lai proposed energy
based competitive learning (EBCL) method to handle
the significant issues related with competitive learning
such as adaptation to clusters having different size and
sparsity, auto initialization and outlier problem [5].
Auto-initialization is attained by extracting samples of
high energy to form a core point set. They proposed
size-sparsity balance of cluster (SSB) and adaptive
learning rate based on samples’ energy (ALR). SSB
method is used for adapting to the clusters of various
size and sparsity. ALR is used for eliminating the
disturbance created by outliers. Multi-exemplar affinity
propagation (MEAP) algorithm is an exemplar based
clustering approach proposed by Wang et al. [6].
MEAP addresses the drawback of affinity propagation
(AP). AP represents each cluster with the help of single
exemplar. Hence, it is unable for modeling the category
having multiple subclasses. MEAP model maximizes
the sum of the similarities among data points. This
approach also maximizes the sum of all linkages be-
tween exemplars and super-exemplars. Conscience on-
line learning (COLL) [7] is used to select winning
prototype for every datapoint taken randomly for each
iteration of the procedure. The winner is updated by
the on-line learning rule. Instead of re-computing mean
of cluster, the procedure needs only one winning pro-
totype to update. This results in faster convergence of
the algorithm. Moreover, Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) [31] is a
popular clustering algorithm which is widely used in
many applications. Some of the advanced variance of
the DBSCAN is also used for specific applications.
One of the variant is revised DBSCAN [32]. It solves
the problem of detecting border objects of adjacent
clusters. Das et al. [33] proposed k-mer in composition
vector method for comparing genome sequences.

To optimize the objective functions of clustering
algorithm, different evolution strategies and population
based optimization strategies are applied. Objective
function can be centroid or non-centroid type of func-
tions. Evolution strategies are used to optimize both
centroid and non-centroid objective functions. Evolu-
tion strategies are applied parallel to the clustering
problems. The approach is applied on different data sets
to display the usefulness of evolution strategies. A
hybrid genetic algorithm is proposed to find optimal
partition of data into K-clusters [8]. Kader [9] proposed
a hybrid of genetic algorithm and K-Means clustering
and verified the efficiency of the algorithm by applying
in a practical scenario on online shopping market seg-
mentation case. Hassanzadeh and Meybodi have pro-
posed a firefly optimization based clustering algorithm
and compared the obtained results with PSO, K-Means,
and K-PSO considering standard datasets [10]. Han
et al. [11] proposed a clustering algorithm based on the
Bird Flock Gravitational Search Algorithm (BFGSA).
The algorithm is compared with the GSA, the Artificial
Bee Colony (ABC), the Firefly Algorithm (FA), K-
Means and different variants of Particle Swam Opti-
mization such as NM-PSO, K-PSO, K-NM-PSO, and
CPSO. The experimental results show better perfor-
mance of BFGSA over other compared algorithms.
Firouzi et al. introduced a hybrid Simulated annealing
and ant colony optimization based data clustering al-
gorithm [12]. Kao et al. has implemented the hybrid of
PSO and K-Means [13] and compared with Genetic
Algorithm based clustering [14] and hybrid of GA and
K-Means [15] to improve the clustering result. This
algorithm has a better convergence characteristic with a
few numbers of evaluations. However, the main draw-
back is having the overlapped data points. A new data
clustering approach is proposed in paper [16] based on
PSO integrated with the kernel density estimation
(KDE). KDE is used to improve the balance between
exploitation and exploration. The hybridization of
improved PSO and genetic algorithm (GA) along with
K-Means algorithm improves the convergence speed as
well as helps to find the global optimal solution. In the
first stage, IPSO has been used to get a global solution
in order to get optimal cluster canters. Then, the
crossover steps of GA are used to improve the quality of
particles and mutation is used for diversification of so-
lution space in order to avoid premature convergence. In
paper [17], a hybrid K-Means based on improved PSO
and GA has been proposed which is used to find the
global optimal solution and also results in improved
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convergence speed. Improved PSO is used to find the
optimal cluster centres by finding the global optimal
solution. The quality of clustering is improved by the
crossover steps of GA and mutation is applied to avoid
premature convergence.

It is clear from the literature that with evolution of
new optimization techniques, researchers are using the
techniques for developing data clustering algorithms.
Data clustering algorithms using GA (genetic algo-
rithm) is based on the selection, crossover and mutation.
Whereas Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Firefly Optimization (FO), Ant
Colony Optimization (ACO), Simulated Annealing
(SA), Gravitational Search Algorithm (GSA), Bird
Flock Gravitational Search Algorithm (BFGSA), Arti-
ficial Bee Colony (ABC) are inspired from the natural
phenomena and natural organisms and used to improve
the performance of clustering. Furthermore, these meta-
heuristic optimization methods search for global
optimal solutions for the functions using a collaborative
approach of search agents and significant parameters
within the search region. Consequently, the optimiza-
tion algorithm has two important performance indexes
in terms of exploration and exploitation. Moreover,
randomness plays a major role in optimization methods
to generate distinct result in each run; however it is still
difficult to avoid local minima problem. Swarm and
nature based optimizations like PSO, DE, GA etc. have
the problem of early convergence. The problem of early
convergence has been solved by using some hybridi-
zation techniques and innovative variants of the opti-
mization methods.

As reported in literature, a number of advanced
meta-heuristic algorithms like GWO, ABC etc uses
distinct functions in the process of exploitation and
exploration. Moreover, according to Wolpert and
Macready [18], none of the techniques will solve all
the optimization problems. Furthermore, the no free
lunch theorem says that the performance of an algo-
rithm does not assure its success in various sets of
problems. This motivates us to apply Antlion Opti-
mizer (ALO) algorithm for data clustering problem.
Antlion Optimizer (ALO) algorithm is a novel meta-
heuristic algorithm inspired by the behaviour of
antlion proposed by Mirjalil [19]. It maintains the
balance between exploration and exploitation by using
a global search for exploration and local search for
exploitation. The ALO method has not only high po-
tential to explore the search space but also has the high
exploitation capability to quickly converge for a global
optimum. The ALO algorithm has been considered due
to its faster convergence, effective exploration using
random walks and random selection of search agents
and accurate exploitation using adjustive limits of
traps. Nowadays, this algorithm is used in many en-
gineering domains like automobile cruise control sys-
tem [20,21], power system [22,23], classification and
neural network [24,25] etc.

By considering the discussed advantages of the
ALO, in this work, a data clustering algorithm is pro-
posed by combining the K-Means with ALO. The
performance of the proposed KMeans-ALO clustering
algorithm is compared against the performance of K-
Means, KMeans-PSO, KMeans-FA, DBSCANand
Revised DBSCAN. KMeans-PSO combines K-Means
clustering algorithm with Particle Swarm Optimization
(PSO) for optimization of the cluster centroids. Simi-
larly Firefly Algorithm (FA) is combined with KMeans
in KMeans-FA hybrid clustering method.

The rest of the paper is organised as follows. Sec-
tion 2 describes the materials and methods required
which gives the description about the algorithms used,
data sets and the performance metrics based on which
the quality of clustering is measured. Section 3 repre-
sents the results obtained from the implementation of
the algorithms followed by conclusion of the work in
the last section.

2. Materials and methods

2.1. Proposed hybrid K-Means and ALO clustering
algorithm

K-Means clustering is an unsupervised hard parti-
tioning clustering method. The objective is to find k
clusters from the data based on the objective function J
given in Eq. (1).

J ¼
Xk

i¼1

XN
j¼1

d2
�
Ci �Xj

� ð1Þ

where d2(Ci-Xj) is the squared Euclidean distance between ith
cluster centroid and jth data point. N is the total number of
data points. Based on the distance obtained, the points are
assigned to the cluster with minimum distance from the
centroid. After the points are clustered the mean of all points
belonging to the cluster is found. Then mean value is assigned
as the new cluster centroid for the next iteration. This process
is repeated until the centroid obtained is same as that of the
previous iteration. The aim of K-Means algorithm is to
minimize the objective function.

Ant Lion Optimization method is also a nature
inspired algorithm which follows the hunting behaviour
of antlion larvae [19]. An ant lion larva creates a conical
shaped hole by moving along a circular path in the sand



BEGIN ALGORITHM: No. of

Operations

Select K random points as cluster centres

WHILE the end criterion is not satisfied (Tþ1)

FOR each point T*(Pþ1)

Find the Euclidean distance of each point from

the cluster centres

T*P*K

Assign the point to the cluster with minimum

Euclidean distance

T*K

END FOR

Compute the mean of all points in each cluster T*K

Assign the mean values as the new cluster centres T*K

END WHILE

Return K clusters

FOR each cluster (Kþ1)

Initialize the first population of ants from the dataset

(continued on next page)
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and throwing the sandwith its huge jaw. After digging the
trap, larvae hide at the bottom of the cone and waits for
the ants to be trapped in the pit. Once the ant lion realizes
that a prey has been caught in the trap, the ant lion throws
sand outwards and slips its prey into the pit. When a prey
is caught into the jaw, the ant lion pulls the prey toward
itself and consumes. This process is mathematically
designed to perform optimization. There are five main
steps in this method are: (1) Random walks of ants, (2)
Building traps, (3) Entrapment of ants in traps, (4)
Catching preys and (5) Rebuilding trap.

Ants use random walks for moving around the
search space which is affected by the traps of antlions.
The positions of ants are updated with random walk at
every iteration. The random walks for iteration t are
created using. (2). However to ensure that all the
random walks fall inside the boundary of search space,
normalization is applied. The random walks are
normalized using Eq. (3).

X½t� ¼ ½0; cumsumð2rðt1Þ � 1Þ; cumsumð2rðt2Þ
� 1Þ;…cumsumð2rðtnÞ � 1Þ� ð2Þ

where, r(t) ¼ 1 if rand > 0.5 or 0 if rand � 0.5

Xt
i ¼

�
Xt

i � ai
�� �

bi � cti
��

dti � ai
� þ ci: ð3Þ

ai and bi are the minimum and maximum of random
walk respectively for ith variable. cti is the minimum of
ith variable at iteration t. dti is the maximum of ith

variable at iteration t.
The traps created by antlions impact the random

walks of ants. This process is mathematically
explained using Eq. (4) and Eq. (5).

cti ¼ Antliontj þ ct ð4Þ
dti ¼ Antliontj þ dt ð5Þ

here Antliontj is the position of antlion i at iteration t. ct and
dtare the minimum and maximum of all variables respectively.
cti is the minimum of ith ant at iteration t and dti is the
maximum of ith ant at iteration t.

A roulette wheel selection approach is used to select
antlions for optimization based on their fitness value. The
fittest antlion obtained in each iteration is saved as elite.
The elite impact the movements of ants. Furthermore the
positions of ants are updated based on the random walk
of selected antlion as well as the elite because every ant
walks around a selected antlion and also around the elite.
This process is formulated in eq. (6).

Antti ¼
Rt
A þ Rt

E

2
: ð6Þ
RA
t is the random walk around the antlion selected

by the roulette wheel at tth iteration and RE
t is the

random walk around the elite at tth iteration. Anti
t is the

position of ant i at iteration t.
The fitness values of all ants are calculated. An

antlion is replaced by corresponding ant if the ant has
better fitness than the antlion. Similarly the elite is also
replaced by an antlion if the antlion has better fitness
than elite.

For the improvement of the quality of clustering of
KMeans algorithm a hybrid of KMeans clustering
method and antlion optimization algorithm is pro-
posed. In the first step the number of clusters to be
formed is determined. Then all the data points are
clustered based on minimum Euclidean distance ob-
tained. The next step is to calculate the optimized
cluster centroid for each of the clusters obtained. For
the optimization process each cluster is initialized as
ant and antlion population randomly. Then the fitness
value of all the ants and antlions are calculated using
the objective function of the KMeans clustering
method. As the sum of average of intracluster distances
should be minimized, the antlion having the minimum
fitness value is considered as elite. For each cluster the
Antlion optimization process is carried out to obtain
the best position of the cluster centroid. The returned
elites are treated as the centroids for the K-Means
clustering algorithm. The flow chart of the proposed
method is given in Fig. 1.

Hybrid K-Means and ALO clustering algorithm
INPUT:The number of iterationsT, number of clus-

ters K, number of ants A, number of antlions L, total
ant antlion population P, dataset D with Ninstances and
M attributes.

OUTPUT: Optimized cluster centroids.



(continued )

BEGIN ALGORITHM: No. of

Operations

Initialize the first population of ant lions randomly

Calculate the fitness of ants and ant lions using

the objective function

K*P

Select the ant lion with minimum fitness value as

elite

K*L

WHILE the end criterion is not satisfied K*(Tþ1)

FOR every ant T*K*(Aþ1)

Select an ant lion using Roulette wheel T*K*A

Update minimum of all variables and maximum

of all variables

T*K*A

Create a random walk as using Eq. (2) T*K*A

Normalize the random walk using Eq. (3) T*K*A

Update the position of ant by Eq. (6) T*K*A

END FOR

Find the fitness value of all ants T*K

Replace an antlion with its corresponding ant if

f(Anti)<f (Antlionj)
T*K

Update elite if f (Antlionj) <f (elite) T*K

END WHILE

Return elite K

END FOR

Select elite as the new center of the cluster 1

END ALGORITHM
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2.2. Data sets

The algorithms mentioned in the previous section
are applied on 8 different datasets to obtain the results.
The datasets are collected from UCI machine learning
repository [26]. The data sets are glass, vowel, iono-
sphere, leaf, gene expression cancer RNA-seq, wave-
form database generator (version 2), immunotherapy
and soybean. All the instances of Glass dataset are
divided into 7 classes which defines the types of
glasses. Vowel dataset is the connectionist bench
(vowel recognition e deterding data) data set. The
ionosphere data set can be categorized into 2 classes
based on the radar returns. This checks for free elec-
trons in the ionosphere. The instances of the Leaf
dataset data are collected from 40 different plant spe-
cies. The Gene expression cancer RNA-seq dataset is a
collection of randomly extracted gene expressions of
patients having different types of tumor such as:
BRCA, KIRC, COAD, LUAD, and PRAD. The
waveform data set consists of 5000 data instances
which are categorized into 3 classes of waves. The
immunotherapy data set is a collection of treatment
results of patients using immunotherapy. The classes
formed based on the result of the treatment (whether
positive or negative). The soybean data set is a
collection of 4 classes of soybean i.e. D1, D2, D3, D4.
A brief description about all the datasets discussed
above is given in Table 1.

2.3. Performance metrics

The quality of clustering is obtained using the
proposed algorithm is evaluated based on different
performance metrics. The performance metrics
considered for this work are average of sum of intra-
cluster distances and F-measure.

2.3.1. Average of sum of intracluster distances

Data points belonging to same cluster should be as
close as possible i.e. the intracluster distance should be
minimum in order to get optimal quality of clustering.
Different methods to evaluate the intracluster distance
are complete diameter, centroid diameter and average
diameter. In this work the centroid diameter method of
calculating the intracluster distance is considered.

Complete diameter method calculates the intra-
cluster distance by calculating the greatest distance
between any two points belonging to the cluster. In
centroid diameter method the intracluster distance is
the average distance between the cluster centroid and
all points belonging to that cluster. In this work intra-
cluster distance is being measured using the centroid
method of finding the intra-cluster distance. Average
diameter method considers the average distance be-
tween all pairs of points belonging to the cluster.

2.3.2. F-measure

F-measure is calculated using the concepts of pre-
cision and recall from information retrieval. Each class
i of the data set is regarded as the set of ni items desired
for a query. Each cluster j is regarded as the set ofnj
items retrieved for a query. nij represents the number of
elements of class i within cluster j. For each class i and
cluster j, precision and recall calculations is repre-
sented in Eq. (7) and F-measure is given in Eq. (8). The
final calculation of the F-measure is given in Eq. (9).
Here b is a constant which is responsible for equal
weighing for precision and recall. The value of b is
taken as 1.

precisionði; jÞ ¼ nij
nj
; recallði; jÞ ¼ nij

ni
ð7Þ

Fði; jÞ ¼ ðb2 þ 1Þ:precisionði; jÞ:recallði; jÞ
b2:precisionði; jÞ þ recallði; jÞ ð8Þ

F ¼
Xk

i¼1

ni
N
maxfFði; jÞg ð9Þ



Fig. 1. Flow chart of KMeans-ALO.
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3. Results and discussion

All the algorithms discussed in the materials and
methods section are implemented with MatlabR2016a
on a Windows platform using Intel(R) Core(TM) i3-
2310 M, 2.10 GHz, 4 GB RAM computer. The
experimental results for the average of sum of
Table 1

A brief description of the data sets used.

Sl. No. Dataset No. of

instances

No. of

classes

No. of

Attributes

1 Glass 214 7 10

2 Vowel 990 6 10

3 Ionosphere 351 2 34

4 Leaf 340 30 16

5 RNA-seq 801 5 20,531

6 Waveform 5000 3 40

7 Immunotherapy 90 2 8

8 Soybean 47 2 35
intracluster distance are calculated on all the eight
datasets discussed in the materials & methods section
are provided in Tables 2e9. The results are collected
over 10 different runs, for 100, 500 and 1000
iterations.

For glass dataset all the three hybrid methods i.e.
KMeans-ALO, KMeans-FA and KMeans-PSO gives
the same minimum value of 0.2663 for sum of average
of intracluster distances for 100 iterations. For 500 it-
erations both KMeans-PSO and KMeans-FA give
minimum intracluster distance i.e. 0.2663. For 1000
iterations KMeans-PSO and KMeans give minimum
intracluster distance. The results given in Table 2 are
obtained over 214 data points belonging to two
different attributes. For vowel dataset the sum of
average of intracluster distance, F-measure and stan-
dard deviation have been evaluated over 528 data
points. The minimum intracluster distance value of
1.5739 and 1.5744 is obtained by KMeans-ALO for



Table 2

Results obtained by K-Means, KMeans-PSO, KMeans-FA, DBSCAN, Revised DBSCAN and KMeans-ALOalgorithms for 10 different runs on

Glass data set for 100, 500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 0.2696 0.27,678 0.3053 0.9989 0.0174

KMeans-PSO 100 0.2663 0.28,374 0.3055 0.9989 0.0186

KMeans-FA 100 0.2663 0.28,758 0.3051 0.9989 0.0184

DBSCAN 100 0.2681 0.2681 0.2681 0.0280 0

Revised DBSCAN 100 0.2669 0.2669 0.2669 0.8928 0

KMeans-ALO 100 0.2663 0.28,287 0.3051 0.9989 0.0192

K-Means 500 0.2665 0.28,674 0.3053 1.4320 0.0195

KMeans-PSO 500 0.2663 0.291 0.3053 0.9989 0.0184

KMeans-FA 500 0.2663 0.28,078 0.3051 1.4320 0.0169

DBSCAN 500 0.2681 0.2681 0.2681 0.0280 0

Revised DBSCAN 500 0.2669 0.2669 0.2669 0.8928 0

KMeans-ALO 500 0.2664 0.29,027 0.3051 0.9989 0.0192

K-Means 1000 0.2665 0.2865 0.3057 1.4320 0.0199

KMeans-PSO 1000 0.2664 0.27,998 0.3051 0.9989 0.0173

KMeans-FA 1000 0.2697 0.29,165 0.3051 0.9989 0.0173

DBSCAN 1000 0.2681 0.2681 0.2681 0.0280 0

Revised DBSCAN 1000 0.2669 0.2669 0.2669 0.8928 0

K-Means-ALO 1000 0.2664 0.29,027 0.3051 0.9989 0.0192

Table 3

Results obtained by K-Means, KMeans-PSO, KMeans-FA, DBSCAN, Revised DBSCAN and KMeans-ALO algorithms for 10 different runs on

Vowel data set for 100,500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 8.1460 10.31,046 14.4252 1.3595 2.1627

KMeans-PSO 100 1.5743 1.66,803 2.0370 1.7035 0.3292

KMeans-FA 100 1.6617 1.76,214 2.0222 1.7035 0.1527

DBSCAN 100 1.9747 1.9747 1.9747 0.0061 0

Revised DBSCAN 100 1.8908 1.8908 1.8908 0.9671 0

KMeans-ALO 100 1.6601 1.67,515 2.0230 1.6901 0.1539

K-Means 500 8.1437 9.76,398 14.4389 1.3451 2.6978

KMeans-PSO 500 1.5856 1.5703 2.0314 1.7533 0.3138

KMeans-FA 500 1.6626 1.78,148 2.1583 1.7035 0.1675

DBSCAN 500 1.9747 1.9747 1.9747 0.0061 0

Revised DBSCAN 500 1.8908 1.8908 1.8908 0.9671 0

KMeans-ALO 500 1.5739 1.62,269 2.0233 1.7535 0.1885

K-Means 1000 8.1485 9.41,156 14.4443 1.3945 2.6497

KMeans-PSO 1000 1.5750 1.69,249 2.0238 1.7147 0.2015

KMeans-FA 1000 1.6507 1.68,894 1.8941 1.7035 0.0725

DBSCAN 1000 1.9747 1.9747 1.9747 0.0061 0

Revised DBSCAN 1000 1.8908 1.8908 1.8908 0.9671 0

KMeans-ALO 1000 1.5744 1.64,987 2.0265 1.7201 0.2380
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500 and 1000 iterations respectively. For 100 iterations
Kmeans-PSO gives minimum intracluster distance. For
500 and 1000 iterations KMeans-ALO gives maximum
F-measure of 1.7201 and 1.7535 respectively. For 100
iterations KMeans-PSO and KMeans-FA give
maximum F-measure value of 1.7035. In Table 4 the
sum of average of intracluster distances, F-measure
and standard deviation for all the four algorithms are
tabulated for ionosphere data set. The values are
evaluated over 351 data points of ionosphere data set.
KMeans-ALO provides minimum intracluster distance
of 0.6659. For leaf data set, DBSCAN provides mini-
mum intracluster distance of 0.0512. However the
maximum value for F-measure is obtained by kmeans-
ALO. The results are evaluated on 340 data points of
two different attributes. For gene expression cancer
RNA-seq data set DBSCAN gives the minimum
intracluster distance value i.e. 3.1722. Maximum F-
measure value of 1.3445 is obtained by KMeans-FA.
The results given in Table 6 are obtained over 801



Table 4

Results obtained by K-Means, KMeans-PSO, KMeans-FA, Revised DBSCAN and KMeans-ALO algorithms for 10 different runs on Ionosphere

data set for 100,500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 0.6666 0.8759 1.5381 20.1548 0.2740

KMeans-PSO 100 0.6663 0.78,042 1.5380 19.6610 0.2694

KMeans-FA 100 0.6664 0.70,577 0.8608 19.6600 0.0817

DBSCAN 100 1.5490 1.5490 1.5490 17.1000 0

Revised DBSCAN 100 1.0121 1.0121 1.0121 19.0542 0

KMeans-ALO 100 0.6663 0.72,899 1.1135 20.1548 0.1398

K-Means 500 0.6669 0.85,855 1.5381 34.6548 0.3622

KMeans-PSO 500 0.6664 0.84,111 1.5379 19.6610 0.3672

KMeans-FA 500 0.6660 0.75,412 1.5379 19.7866 0.2753

DBSCAN 500 1.5490 1.5490 1.5490 17.1000 0

Revised DBSCAN 500 1.0121 1.0121 1.0121 19.0542 0

KMeans-ALO 500 0.6660 1.11,551 1.5381 20.1548 0.3447

K-Means 1000 0.7539 0.88,422 1.6681 34.3522 0.0273

KMeans-PSO 1000 0.6663 0.85,031 1.5379 34.9099 0.3635

KMeans-FA 1000 0.6672 0.80,164 1.1124 19.9295 0.2149

DBSCAN 1000 1.5490 1.5490 1.5490 17.1000 0

Revised DBSCAN 1000 1.0121 1.0121 1.0121 19.0542 0

KMeans-ALO 1000 0.6659 0.84,095 1.5382 29.1508 0.3675

Table 5

Results obtained by K-Means, KMeans-PSO, KMeans-FA, Revised DBSCAN and KMeans-ALO algorithms for 10 different runs on Leaf data set

for 100,500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 0.0584 0.05856 0.0587 2.9701 0.0002

KMeans-PSO 100 0.0583 0.0584 0.0587 2.9777 0.0001

KMeans-FA 100 0.0582 0.05855 0.0589 2.9751 0.0002

DBSCAN 100 0.0512 0.0512 0.0512 2.9708 0

Revised DBSCAN 100 0.0550 0.0550 0.0550 2.9777 0

KMeans-ALO 100 0.0583 0.0583 0.0583 2.9787 0

K-Means 500 0.0584 0.05852 0.0586 2.9701 0.0002

KMeans-PSO 500 0.0583 0.0585 0.0587 2.9777 0.0002

KMeans-FA 500 0.0582 0.05838 0.0586 2.9751 0.0001

DBSCAN 500 0.0512 0.0512 0.0512 2.9708 0

Revised DBSCAN 500 0.0550 0.0550 0.0550 2.9777 0

KMeans-ALO 500 0.0583 0.05834 0.0585 2.9787 0.00008

K-Means 1000 0.0584 0.06414 0.0586 2.9701 0.0002

KMeans-PSO 1000 0.0583 0.0584 0.0587 2.9777 0.0002

KMeans-FA 1000 0.0582 0.05855 0.0588 2.9751 0.0002

DBSCAN 1000 0.0512 0.0512 0.0512 2.9708 0

Revised DBSCAN 1000 0.0550 0.0550 0.0550 2.9777 0

KMeans-ALO 1000 0.0583 0.0583 0.0583 2.9787 0
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data points belonging to two different attributes. For
waveform database generator data set we have
considered 5000 data points belonging to 2 attributes
and evaluated the sum of average of intracluster dis-
tance for 100, 500 and 1000 iterations on 10 different
runs. Also the F-measure and standard deviation is
calculated for 100, 500 and 1000 iterations for each of
the four algorithms used. It can be observed from Table
7 that for this dataset the KMeans-ALO gives the
minimum intracluster distance of 3.5675 whereas
maximum value for F-measure is obtained by
DBSCAN. For immunotherapy dataset KMeans-ALO
gives the minimum intracluster distance value i.e.
274.1204 and maximum F-measure value of 1.6276.
The results given in Table 8 are obtained over 90 data
points of two different attributes. For soybean data set
the sum of average of intracluster distance, F-measure
and standard deviation are obtained over 47 data points



Table 6

Results obtained by K-Means, KMeans-PSO, KMeans-FA, Revised and KMeans-ALO algorithms for 10 different runs on Gene expression cancer

RNA-seqdata set for 100, 500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 3.3630 3.3538 3.3757 1.1818 0.0063

KMeans-PSO 100 3.3591 3.36,451 3.3687 1.1818 0.0034

KMeans-FA 100 3.3636 3.36,823 3.3708 1.3445 0.0031

DBSCAN 100 3.1722 3.1722 3.1722 1.3440 0

Revised DBSCAN 100 3.3698 3.3698 3.3698 1.3239 0

KMeans-ALO 100 3.3534 3.35,598 3.3579 1.1818 0.0016

K-Means 500 3.3620 3.5694 3.38,601 1.1818 0.0065

KMeans-PSO 500 3.3636 3.44,384 4.1410 1.1818 0.2324

KMeans-FA 500 3.3562 3.35,928 3.3606 1.3445 0.0021

DBSCAN 500 3.1722 3.1722 3.1722 1.3440 0

Revised DBSCAN 500 3.3698 3.3698 3.3698 1.3239 0

KMeans-ALO 500 3.3534 3.35,629 3.3579 1.3442 0.0597

K-Means 1000 3.3561 3.3746 3.36,674 1.1818 0.0042

KMeans-PSO 1000 3.3590 3.36,425 3.3689 1.1818 0.0030

KMeans-FA 1000 3.3557 3.37,016 3.3757 1.3445 0.0079

DBSCAN 1000 3.1722 3.1722 3.1722 1.3440 0

Revised DBSCAN 1000 3.3698 3.3698 3.3698 1.3239 0

KMeans-ALO 1000 3.3536 3.35,629 3.3579 1.3442 0.0598

Table 7

Results obtained by K-Means, KMeans-PSO, KMeans-FA, Revised DBSCAN and KMeans-ALO algorithms for 10 different runs on Waveform

database generator data set for 100, 500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 3.5678 3.79,873 4.1462 0.9893 0.2321

KMeans-PSO 100 3.5768 3.67,325 4.1669 1.0880 0.1703

KMeans-FA 100 3.5684 3.74,025 4.1411 0.9914 0.2766

100 3.5708 3.5708 3.5708 1.1031 0

Revised DBSCAN 100 3.5690 3.5690 3.5690 1.0999 0

KMeans-ALO 100 3.5675 4.44,033 4.1409 1.0014 0.2292

K-Means 500 3.5692 4.32,885 4.1577 0.9893 0.2818

KMeans-PSO 500 3.5687 3.85,696 4.1417 1.0880 0.7208

KMeans-FA 500 3.5685 3.79,754 4.1411 1.0880 0.2956

DBSCAN 500 3.5708 3.5708 3.5708 1.1031 0

Revised DBSCAN 500 3.5690 3.5690 3.5690 1.0999 0

KMeans-ALO 500 3.5682 3.8798 4.1530 1.0013 0.2743

K-Means 1000 3.5682 3.67,452 4.1408 0.9914 0.2825

KMeans-PSO 1000 3.7028 3.73,201 4.1520 1.0880 0.2888

KMeans-FA 1000 3.5684 3.683 4.1411 0.9914 0.2414

DBSCAN 1000 3.5708 3.5708 3.5708 1.1031 0

Revised DBSCAN 1000 3.5690 3.5690 3.5690 1.0999 0

KMeans-ALO 1000 3.5675 4.44,033 4.1409 1.0014 0.2743
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of two different attributes. KMeans-ALO gives the
minimum intracluster distance value i.e. 2.0198 for
both 500 and 1000 iterations. For 100 iterations
KMeans-PSO gives the minimum value for sum of
average of sum of intracluster distance.

The values in Table 2 to Table 9 show that KMeans-
ALO gives minimum intracluster distance and
maximum F-measure for glass, vowel, ionosphere,
waveform database generator (version 2),
immunotherapy and soybean. For leaf dataset Kmeans-
FA provides minimum intracluster distance and for
gene expression cancer RNA-seq DBSCAN provides
minimum intracluster distance. The KMeans-ALO uses
random walks and random selection of search agents for
effective exploration and uses adjustive limits of traps for
accurate exploitation. Thus KMeans-ALO provides bet-
ter results as compared to other methods considered by
quickly converging for global optimum.



Table 8

Results obtained by K-Means, KMeans-PSO, KMeans-FA, Revised DBSCAN and KMeans-ALO algorithms for 10 different runs on Immuno-

therapy data set for 100, 500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 274.9177 342.66,974 625.3499 1.6040 131.8395

KMeans-PSO 100 283.5370 357.65,789 603.9673 1.6073 162.2166

KMeans-FA 100 274.7445 345.97,009 626.0714 1.6273 147.6856

DBSCAN 100 298.3393 298.3393 298.3393 0.0167 0

Revised DBSCAN 100 292.0989 292.0989 292.0989 0.9124 0

KMeans-ALO 100 274.6798 325.54,186 591.5543 1.6276 131.1642

K-Means 500 283.9177 274.69,255 276.1581 1.6040 87.1694

KMeans-PSO 500 283.5370 324.67,073 603.9673 1.6073 140.9375

KMeans-FA 500 276.1116 276.12,675 276.1621 1.6276 0.02439

DBSCAN 500 298.3393 298.3393 298.3393 0.0167 0

Revised DBSCAN 500 292.0989 292.0989 292.0989 0.9124 0

KMeans-ALO 500 274.1204 339.94,343 603.0107 1.6276 131.5336

K-Means 1000 274.4723 310.43,787 276.4448 1.6028 95.1210

KMeans-PSO 1000 283.5370 299.79,307 603.9673 1.6076 102.7227

KMeans-FA 1000 274.6302 411.61,469 626.2808 1.6273 175.3127

DBSCAN 1000 298.3393 298.3393 298.3393 0.0167 0

Revised DBSCAN 1000 292.0989 292.0989 292.0989 0.9124 0

KMeans-ALO 1000 274.1204 328.6323 624.6784 1.6276 140.9650

Table 9

Results obtained by K-Means, KMeans-PSO, KMeans-FA, Revised DBSCAN and KMeans-ALO algorithms for 10 different runs on Soybean data

set for 100, 500 and 1000 iterations.

Methods Iterations Best value Average value Worst Value F-measure Standard deviation

K-Means 100 2.0215 2.9984 3.0859 6.7556 0.1809

KMeans-PSO 100 2.0201 2.49,647 3.0861 6.7556 0.4827

KMeans-FA 100 2.1663 2.60,784 3.0852 7.5887 0.5027

DBSCAN 100 2.1963 2.1963 2.1963 4.2600 0

Revised DBSCAN 100 2.1921 2.1921 2.1921 4.9801 0

KMeans-ALO 100 2.1640 2.51,855 3.0823 7.5887 0.4622

K-Means 500 2.0215 2.39,974 3.0850 7.7195 0.4576

KMeans-PSO 500 2.0199 2.34,042 3.0852 7.6312 0.3817

KMeans-FA 500 2.0319 2.67,646 3.0859 7.6312 0.5272

DBSCAN 500 2.1963 2.1963 2.1963 4.2600 0

Revised DBSCAN 500 2.1921 2.1921 2.1921 4.9801 0

KMeans-ALO 500 2.0198 2.53,986 3.0830 7.3526 0.4619

K-Means 1000 2.5239 2.39,894 3.0848 7.3526 0.4369

KMeans-PSO 1000 2.0199 2.67,777 3.0853 7.3526 0.5317

KMeans-FA 1000 2.0218 2.70,866 3.0848 6.7556 0.4474

DBSCAN 1000 2.1963 2.1963 2.1963 4.2600 0

Revised DBSCAN 1000 2.1921 2.1921 2.1921 4.9801 0

KMeans-ALO 1000 2.0198 2.5326 3.0830 7.3526 0.4516
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3.1. Asymptotic analysis of the proposed KMeans-
ALO clustering method

Asymptotic analysis of an algorithm is the run time
performance of the algorithm which depends on the
input to the algorithm. An algorithm will work in a
constant time if it does not depend on the input. The
effective time complexity of K-Means algorithm is
known to be O (n2) [27]. Here, we evaluated the
performance of the algorithm in terms of input size.
The input parameters on which the proposed KMeans-
ALO depends are number of iterations (T), number of
clusters to be formed (K), total population of ants and
antlions (P), number of ants (A), number of antlions
(L), number of attributes (M) and number of instances
of the dataset. The multiplication of the steps needed
for the algorithm and the cost involved in each step
gives the total cost of execution for the proposed



Table 10

Average ranking of the clustering algorithms based on average of sum of intracluster distances.

Data set K-Means KMeans-PSO KMeans-FA DBSCAN Revised DBSCAN KMeans-ALO

Glass 0.2665 (3) 0.2664 (1.5) 0.2697 (6) 0.2681 (5) 0.2669 (4) 0.2664 (1.5)

Vowel 8.1485 (6) 1.5750 (2) 1.6507 (3) 1.9747 (5) 1.8908 (4) 1.5744 (1)

Ionosphere 0.7539 (4) 0.6663 (2) 0.6672 (3) 1.5490 (6) 1.0121 (5) 0.6659 (1)

Leaf 0.05834 (6) 0.0583 (4.5) 0.0582 (3) 0.0512 (1) 0.0550 (2) 0.0583 (4.5)

RNA-seq 3.3561 (4) 3.3590 (5) 3.3557 (3) 3.1722 (1) 3.3698 (6) 3.3536 (2)

Waveform 3.5682 (2) 3.7028 (6) 3.5684 (3) 3.5708 (4) 3.5690 (5) 3.5675 (1)

Immunotherapy 274.4723 (2) 283.5370 (4) 274.6320 (3) 298.3393 (6) 292.0989 (5) 274.1204 (1)

Soybean 2.5239 (6) 2.0199 (2) 2.0218 (3) 2.1963 (5) 2.1921 (4) 2.0198 (1)

Average rank(Rj) 4.125 3.375 3.375 4.125 4.375 1.625
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Fig. 2. Comparison of intracluster distances obtained using K-Means, KMeans-PSO, KMeans-FA, DBSCAN, Revised DBSCAN and KMeans-

ALO for all the 8 datasets based on the average rank of the algorithms.

Table 11

Results obtained from Holm's procedure.

i Algorithms z-value p-value a/(k-i) Hypothesis

1 Kmeans �2.8571 0.00219 0.02 Rejected

2 Kmeans-PSO �2 0.02275 0.025 Rejected

3 Kmeans-FA �2 0.02275 0.0333 Rejected

4 DBSCAN �2.8571 0.00219 0.05 Rejected

5 Revised DBSCAN �3.1428 0.00084 0.10 Rejected
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algorithm. The cost associated with each step is
assumed to be 1 unit. The total number of operations
for KMeans-ALO is determined from the algorithm
given in Section 2.1.
Total number of operations ¼ ðT þ 1Þ þ ½T � ðPþ 1Þ� þ TPK

þ ½T � K � ðAþ 1Þ� þ TKAþ
þ K þ 1

¼ TPK þ 6TKAþ 8TK þ TPþ K
To access the input dataset having N instances and
M attributes (N*M) number of additional operations
are needed.

The total cost is represented as a function of T, K, P,
A, L, N and M, which is given as

f ðT;K;P;A;L;N;MÞ¼ TPKNMþ6TKAþ8TKþTP

þKLþKPNMþ3Kþ2Tþ3

To obtain the worst case performance of the pro-
posed Kmeans-ALO it is assumed that all the param-
eters are equal, resulting in Eq. (10).
þ TK þ TK þ TK þ ðK þ 1Þ þ KPþ ½K � ðT þ 1Þ�
KLþ TKAþ TKAþ TKAþ TKAþ TK þ TK þ TK

Lþ KPþ 3K þ 2T þ 3
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f ðnÞ¼ n5þn4þ6n3þ10n2 þ 5nþ 3 ð10Þ

From Eq. (7), it can be observed that f(n) ¼ O(n5)
for n � 1. It specifies that the algorithm runs in
polynomial time and the time complexity of the algo-
rithm in extremely worst case is O (n5).

The time complexity of K-Means is O (n2) and the
time complexity of KMeans-ALO is O (n5). However,
both K-Means and KMeans-ALO are solvable in
polynomial time.

3.2. Statistical performance evaluation

To determine the existence of significant differences
among the performance of the clustering algorithms sta-
tistical analysis is performed. For determining the differ-
ences Friedman test has been employed in this work.
Friedman test is a non-parametric test which is used to
find differences among groups for ordinal dependent
variables [28]. The null hypothesis H0is considered as

H0: All the four clustering algorithms perform
equally.

The level of confidence a for the test is taken as 0.05.
Ranks are assigned to each algorithm based on their
predictive accuracy, ranged from 1 to k. In this work, as
we are considering intracluster distance as one of the
performancemetrics, the algorithms are ranked based on
the intracluster distance obtained by them. The algo-
rithm which results in minimum value of average of sum
of intracluster distance gets the rank 1 and the algorithm
with maximum value of average of sum of intracluster
distance gets the maximum rank i.e. 4. When multiple
algorithms give the same value of intracluster distance,
the rank given to the algorithms is the average of the
ranks obtained by the algorithms in case they result in
different values. All the algorithms are ranked accord-
ingly for each dataset (see Table 10). The average rankRj

of the jth algorithm is represented in Eq. (11).

Rj ¼ Sumof total ranks obtained by jth algorithm

Total number of data sets
ð11Þ

The bracketed values in Table 10 are the ranks for
the algorithms. Fig. 2 compares the intracluster dis-
tance obtained using KMeans-ALO with that of K-
Means, KMeans-PSO, KMeans-FA, DBSCAN and
Revised DBSCANfor the 8 data sets mentioned based
on the rank obtained.

The Friedman statistics is given by Eq. (12).

FF ¼ ðN � 1ÞX2
F

Nðk� 1Þ �X2
F

ð12Þ
where, X2
F ¼ 12N

kðkþ1Þ

"P
j

R2
j � kðkþ1Þ2

4

#

here N is the number of datasets; k is the number of
algorithms used. The Friedman statistic FFis distrib-
uted according to the F-distribution with (k-1) and (k-
1) (N-1) degree of freedom. For 6 algorithms and 8
datasets the degree of freedom is between 5 and 35.
Critical value of F (5, 35) for a ¼ 0.10 is 2.019 [29]. If
the FF value is less than the critical value then the null
hypothesis will be accepted otherwise it will be
rejected. For the 6 algorithms and 8 datasets the XF

2

value is 11.64,278 and the FF value is 2.8740. As the
FF value is greater than the critical value the null hy-
pothesis is rejected. Thus it can be concluded that there
exists some differences among the algorithms
considered.

The null hypothesis is rejected; hence Holm's pro-
cedure is performed as the post hoc test. The Holm's
method determines whether the performance of the
control algorithm is statistically better than the other
approaches. Here, the null hypothesisH0 represents the
pair of algorithms compared is equivalent. To perform
the test, z value is computed using the formula given in
Eq. (13). Then the probability p is obtained from the
table of normal distribution [30], using the z value. The
obtained probability pi is compared with a/(k-i). In this
case KMeans-ALO is the control algorithm. It is clear
from Table 11 that, the hypothesis is rejected for all the
three cases. Thus it can be determined that KMeans-
ALO performs statistically better K Means, KMeans-
PSO, KMeans-FA, DBSCAN and Revised DBSCAN
algorithms.

z¼ Ri �Rj

SE
ð13Þ

where, SE ¼
ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6N

q
4. Conclusion

The simplicity and efficiency of K-Means has made
it popular for cluster analysis. However the random
initialization of centroid positions is a disadvantage of
this clustering method. In this work effort has been put
forwarded to improve the quality of clustering of
KMeans clustering algorithm by integrating Ant Lion
Optimization which is a nature inspired optimization
technique. The proposed algorithm is implemented on
8 different datasets and the performance of the algo-
rithm is compared based on different performance
metrics. Intracluster distance and F-measure are the
performance metrics used. To obtain better quality of
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clusters the value of intracluster distance should be
minimum and the value for F-measure should be
maximum. The performance of KMeans-ALO is
compared against the performance of K-Means,
KMeans-PSO, KMeans-ALO, DBSCAN and Revised
DBSCAN. The simulation results validate that
KMeans-ALO performs better than the K-Means and
the other two hybrid approaches mentioned. The
Friedman test shows the existence of significant dif-
ferences among Kmeans, Kmeans-PSO, Kmeans-FA,
Kmeans-ALO, DBSCAN and Revised DBSCAN.
Furthermore, Holm test reveals that Kmeans-ALO
gives superior performance than K-Means, KMeans-
PSO, Kmeans-FA, DBSCAN and Revised DBSCAN.
The level of confidence for the statistical analysis is
considered as 0.10 which means that accuracy of the
results obtained by the proposed Kmeans-ALO is 90%.
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