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In this work, a model is proposed to provide an estimation of the 
temporal and spatial changes of the potential within the interaction zone 
between laser and metal surface. The model depends on the real 
experimental data which were measured around the interaction zone. 
This model provides an estimation of the charge involved and considers 
the presence of the hole created by the interaction. For the first time, it 
provides the spatial and the temporal variation of the potential which 
reflects the electric forces and temperature at the interaction zone. It also 
gives a clear insight of the position of the Knudsen layer. The estimated 
maximum potential is more than ten times the potential at the surface 
boundary. This implies that surface potential is due to the interaction of 
the surface with the plasma rather than the usually believed thermionic 
emission. 
 
Keywords: Laser-solid interaction, Poisson's equation, Knudsen layer, Plasma 
dynamics 
Received: 16 April 2010, Revised: 28 May 2010, Accepted: 4 June 2010 

1. Introduction 
When intense laser radiation impinges on a 

solid target with initial density ρs, hot plasma is 
formed at the surface. Above certain threshold 
intensity, depending on the wavelength of the 
laser and material properties, breakdown occurs, 
i.e., free electrons are created in the irradiated 
material [1]. Up to date, the procedure, by which 
the very first free electron is produced, is not 
recognized precisely. The photon energy of the 
laser light is not nearly high enough to ionize the 
atoms or molecules, so direct photoionization 
cannot occur. As well, the photon energy of laser 
light is not high enough for multi-photon 
ionization. Other ionization mechanisms have 
been proposed, such as stimulated Raman 
scattering (SRS) [2]. It is most likely, that due to 
background radiation or impurity effects, free 
electrons are already present. Whatever the 
origin of the initial electron, it collides with 
another atom and ionizes it, creating yet another 
free electron. One electron becomes multiple 
electrons, each gaining energy from the radiation 
field and then ionizing other atoms. The 
concentration of free electrons increases rapidly 
and at high enough light intensities, results is the 
formation of a strongly absorbing layer at the 
surface of the target. 

In order to produce any effect on the material 
by the laser radiation, laser light must be 

absorbed. A laser-induced process is thermally 
activated if the thermalization of the extinction 
excitation energy is fast compared to the initial 
processing step (i.e., pulse duration) [3-8]. In 
such a case, laser treatment is thermal and the 
laser is simply considered as a heat source. In 
metals, light is absorbed within 10-10-10-14s [9]. 

As the laser energy is absorbed, it is 
transformed into thermal energy by the plasma 
electrons which carry the energy deeper into the 
target by electron heat diffusion. At the same 
time, expansion of the heated material sets in and 
leads to the formation of an ablative electron heat 
wave. In a high-Z material, competition between 
electron heat conduction and conversion into 
primary x-rays modifies this heat wave. The 
conversion layer, typically has a high 
temperature (~1keV) and a low density 
(~0.1g/cm3) and is thereby optically thin to the 
radiation generated there [10]. 

Focusing a strong laser beam into plasma can 
considerably influence the plasma’s electron 
temperature and density. This renders the 
measured values of these parameters useless. The 
electric field of the intense laser beam can heat 
electrons in the plasma. This takes place via the 
process of inverse Bremsstrahlung, which will be 
introduced later. Kunze [11] estimated the 
relative change in electron temperature due to 
heating by the laser beam. The laser pulse length 
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is assumed to be long enough to heat the 
electrons, but too short for the electrons to 
transfer this heat to the heavy particles. This 
estimation assumes the laser beam not to affect 
the absorption coefficient of plasma. This is true 
if the maximum kinetic energy that a free 
electron can gain in the radiation field is less 
than the photon energy [12]. 

 
2. Modeling 
The Poisson’s equation for potential inside 

the plasma can be written as: 

°
−=∇
ε
ρV2 (1) 

where ∇2 is the Laplacian operator, V is the 
potential and ρ is space charge density. 

There are many elegant analytical solutions 
to Poisson's equation in special geometries, but 
nowadays, real problems are usually solved 
numerically. Computers and software are now so 
powerful that it can be easier to obtain a 
computer solution than to find the exact one in 
reference books. The finite-difference method 
(FDM) was used to give the governing partial 
differential equation for a particular 
electromagnetic problem. The first step involved 
in the application of the FDM is [13] dividing the 
domain of interest into a grid (usually 
rectangular) in one, two or three dimensions; 
V(x,y,z), which is a three dimensional (3D) 
solution, V(x,y), which is a two dimensional (2D) 
solution (no z-variation), and V(x), which is a one 
dimensional (1D) solution (no y or z-variation). 
The second step is developing algebraic 
equations, which approximate the partial 
derivatives in the governing equations 
(difference equations). The final step is solving 
the set of algebraic equations. 

To solve the Poisson's equation numerically, 
the region of interest can be divided into 
rectangular grid over which the difference 
equation approximations to the 2nd order 
derivatives are defined. The grid points located 
on the boundaries represent fixed nodes where 
the potential is known [13,14]. The internal grid 
points from the boundary are defined as free 
nodes where the potential must be computed. 
The grid points are labeled in the x-direction as i,
i+1, i+2, etc, and in the y-direction j, j+1, j+2, 
etc. In other words, we will write the equations at 
all internal nodes of a grid with a regular step 
size, h, in the x-direction as ∆x, and in the y-
direction, as ∆y as shown in Fig. (1). 

In order to solve Poisson's equation, finite 
differences method (FDM) is used, and the 
approximations to model the governing equation 
are based on forward-difference in time and 
central-difference in space. The 2D Poisson’s 
equation in rectangular coordinates is [15]: 
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Fig. (1) 2D grid considered in this analysis, where i
is spatial index and j temporal index [13] 
 

Considering a rectangular region defined by 
0≤x≤a and 0≤y≤b enclosed by conductors of 
known potential V(x,y) and known charge 
distribution throughout ρ(x,y), the required 
derivatives in the 2D Poisson's equation are: 
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The 1st order partial derivatives with respect 
to x and y can first be defined on either side of 
the grid point (i,j) as: 
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The approximations of the 1st order 
derivatives on either side of grid point (i,j) can 
then be used to approximate the 2nd order partial 
derivatives with respect to x and y as: 
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Inserting the 1st order derivative 
approximations and collecting terms yields the 
2nd order derivative approximations, yield 
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Inserting the 2nd order derivative 
approximations in Poisson's equation gives: 
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Given a square grid (∆x=∆y=h), the equation 
above is reduced to: 
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which is a square-grid 2D Poisson’s equation 
 

3. Experimental and Model Assumptions 
Previous experimental results [16-21] were 

used for feeding the mathematical model with 
the required data to solve the equations involved. 
A solid stainless-steel 304 sample was irradiated 
by Nd:YAG laser pulses with intensity of 
I=12.4MW/cm2 and wavelength λ=1.069µm. The 
laser was focused on spot of area A=1.38x10-

3cm2 using a 10cm focusing lens [17]. A surface 
voltage is generated during the interaction 
between laser pulse and the sample [20]. A 
floating potential probe was used at a distance 
3mm away from the sample surface to measure 
the potential of the plasma generated [18]. 

To start the analytical modeling of the 
experimental results, as well as to provide a 
solution of the problem, several assumptions are 
made. The material is considered as a layer that 
first melts then evaporates, where the skin depth 
represents thickness of this layer and the spot 
area represents the area of this layer. The system 
is placed into an evacuated chamber where the 
right and left boundary voltages (VbR and VbL) are 
zero by neglecting the charge loss produced from 
attraction of charge with surface. Therefore, the 
net charge, not the positive or the negative 
charge, is considered because the data taken from 

reference [52] represent the net charge. As well, 
the ionization by absorption is neglected. Also, 
no time delay between the charge at the 
boundary and the interaction zone occurs. This is 
needed for proper time analysis. As well, the 
charge is not accumulated at the interaction zone. 
This is true only for high vacuum. We assume 
that the problem is spatially 3D (x,y,z) and 
because of symmetry around z we have 
considered (x,z) for simplicity and reducing 
matrix size and time of calculation. We have 
used Cartesian coordinates because the charge 
distribution and motion is not a point source or 
cylindrical.  
 

4. Model Parameters 
The considered model needs many predefined 

parameters as well as numerical solutions of 
Poisson's equation. 
 

4.1 Boundary Conditions Consideration 
The values of the boundary conditions are 

taken as: 
(a) Metal surface potential boundary data values 
are provided by reference [20]. This potential is 
generated from the reaction of the St-St. 304 
sample with the Nd:YAG laser pulses of incident 
intensity 12.4 MW/cm2. Using least square 
fitting (LSF) to represent these results with 
polynomials yields: 

_____________________________________________________________________________________ 
 
V1(t) = 8.758231326297914e+023t6 - 9.647570877481166e+020t5 + 4.3214683770712e+017t4 +

1.004569463264522e+014t3 + 1.274971036417507e+010t2 - 8.371153279949487e+005t + 
2.221652415436611e+001 for 0 ≤ t ≤ t1

V2(t) = -4.216190398182638e+010t3 + 4.106638304623091e+007t2 - 1.283412744333760e+004t + 
1.211358590639905e+000  for t1 ≤ t ≤ t2

V3(t) = 1.058336673315529e+00t2 - 8.700171524786168e+001t - 3.133347479914106e-002 for t2≤t≤ t3
where t1, t2 and t3 are selected times on the potential-time curve 
_____________________________________________________________________________________ 
 
(b) The boundary data at a distance of 3mm 
away from the surface is taken from the 
experimental result of reference [18], which 
measured the temporal voltage using three 
floating probes: one single cylindrical and two 
circular (4.5mm and 9mm in diameter). These 
results are collected and interpolated as temporal 
and spatial voltages and they represent the 
potential over a lateral distance of 9mm. 

The dimensions of the target are 5×2mm2,
therefore, we have selected the potentials over a 
central distance of 5mm instead of 9mm and for 
the same durations. They are considered as the 
upper boundary conditions. 

 

4.2 The Charge Consideration 
We get the values of the charge density from 

two resources; the first is the values of charge 
density for different time and space from the 
center point where the laser interaction with 
solid. We have integrated the data as: 

∫
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x
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This charge is assumed to exist in the hole 
based on the following assumption from charge 
reservation law: 

holeholeprobeprobe
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where ρprobe, ρhole and Aprobe, Ahole are charge 
densities and surface areas of probe and hole, 
respectively 

This charge may be distributed on the first 
layer of the hole, or overall the layers of the hole. 
 For the first layer 
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H

ρ
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where Hw1st and Hw are the number of points of 
1st layer (hole) and one layer, respectively, L and 
t are the length and thickness of the probe, 
respectively 
For all layers 

)()( wholeprobeprobe
wall

probe hkHtL
H

ρ
ρ

=











 ∫ (10b) 

The second resource is using thermal 
emission as we have calculated the total current 
density as: 
J = A* T2 exp (-Eω0/ kbT) (11) 
where A* is Richardson constant, T is the 
temperature, Eω is the work function. The 
electronic current density can be obtained by: 
 
Je= A* T2 exp (-Eω / kbT) = 138.936 A/cm2

I = J x A = 736.365036397x10-3 A
Q = I x tlayer = 3788.64252135x10-9 C 

 
The charge appears to be very small 

compared to that calculated from probe 
measurements. Therefore, we use the charge 
from these probe measurements.  
 

4.3 Hole Size Consideration   
Both fixed hole size of (1x1) mm and 

variable hole size can be considered. It was taken 
from previous heat model of reference [21] who 
considered removing a skin layer according to 
the deposited variable heat delivered by the laser 
source. The number of layers is temporally 
varied and changes as: 
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We have derived the size from the following 
equation: 
ZH (size of hole) = nL (number of layers at that 
time) x ZL (size of layer) 
where ZL (size of layer) = δ (skin depth) x A
(spot area) 
The skin depth = 10-7cm, and the spot area = 
1.38x10-3cm2.

This is satisfactory if we are looking for the 
variation of voltage over all space over the 
surface up to upper boundary. 
 

5. Results and Discussion 
The potential over the surface up to the 

boundary is derived by solving Poisson's 
equation numerically 

°
−=∇
ε
ρV2 (12) 

The 2D Poisson's equation in rectangular 
coordinates is 
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according to the numerical analysis given in 
advance. A nodal grid is created and used in the 
derivation of the finite difference equations. A 
grid is spaced every 5x10-3/d cm along the 
horizontal and vertical axis to ensure that at least 
31 nodes are used in obtaining the potential 
distribution as shown in Fig. (2). 

Fig. (2) Nodal grid formed in order to derive the 
finite difference equations 
 

We have used 31×31 grid size to represent 
reasonably the actual size 5×5mm and 2mm of 
the metal surface. Execution of a program with 
this size of grid is fast since matrix size is not 
large. Although the program is made flexible to 
any size, but MATLAB for larger size would be 
slow.  

The charges collected on the probes are 
considered to be the same as in the hole. This is 
calculated as: 
Q (t) = ρprobe (t) L = ρhole (t) W (14) 
where L is the boundary length, W is the hole 
length, ρprobe(t) is the temporal charge density on 
the probe and ρhole(t) is the temporal charge 
density in the hole 

This charge may be divided equally on the 
first layer of the hole points or may be divided 
entirely over all the hole size (2D). 

Analysis of the plasma potential production 
from interaction of a laser beam with a 
workpiece is based on development of a two-
dimensional model for the geometry shown in 
Fig. (3). The laser beam is characterized by its 
wavelength λ, the beam spot radius ω0 at the 
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surface, the skin depth δ, and the power density I
within the spot. The workpieces were secured by 
a rectangular plate with a square hole in the 
middle, so that the laser beam could irradiate the 
exposed workpiece in the middle of the clamp 
plate. 

Fig. (3) Description of the boundary conditions of 
the mathematical model used in this work 
 

The model described in this work explains a 
physical matter that can be described as a 
material (St. St. 304) of 2mm thickness and 5mm 
length, three probes (single cylindrical, and two 
ring probes of 9mm and 4.5mm diameters) at a 
distance of 3mm from the target, where the 
values produced from these probes were assumed 
as boundary conditions for the upper limits of the 
model and the boundary condition of the lower 
limit of the model was taken from reference [17]. 
Finally, the boundary conditions on the left and 
right side of the mathematical model has been 
assumed zero considering that the system is 
located in an evacuated chamber. The results 
have taken into account all the variables 
mentioned above according to the block diagram 
shown in Fig. (4). 

The problem is solved with charge density 
Poisson's equation. We have solved the problem 
when the charge density is in the first layer and 
we consider a fixed hole size (1×1mm) and with 
only metal surface potential boundary data 
values as shown in Fig. (5).We have also solved 
the problem in the same case as before but with 
metal surface potential boundary data values and 
with boundary data at 3mm away from the 
surface as shown in Fig. (6). 

The problem is solved when the charge 
density is in all layer and we consider a fixed 
hole size (1×1mm) and with only metal surface 
potential boundary data values as shown in Fig. 
(7).We have also solved the problem in the same 
case as before but with metal surface potential 
boundary data values and with boundary data at 
3mm away from the surface as shown in Fig. (8). 

 

Fig. (5) The solution of the problem when the 
charge density is in the first Layer and considering 
a fixed hole size (1×1mm) and with only metal 
surface potential boundary data values 

Fig. (6) The solution of the problem in the same 
case as before but with metal surface potential 
boundary data values and with boundary data a 
3mm away from the surface 

 
We also have solved the problem with hole, 

and we may consider a variable hole size with 
time but with only metal surface potential 
boundary data values as shown in Fig. (9). We 
have solved the problem in the same case as 
before but with metal surface potential boundary 
data values and with boundary data at 3mm away 
from the surface as shown in Fig. (10). 
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The case in Fig. (5) represents the potential in 
vacuum with no upper boundary condition. Also 
it represents a true experimental case at the early 
stage of the pulse where the mass removal is 
small (no proper hole).The variation of the 
potential with time shows clearly the stages of 
plum dynamic. The maximum voltage peak is 
about ten times the voltage of the surface 
boundary at t=0.001sec. At all other times the 
surface potential does not affect the plasma 
potential but only in the part near the surface.  

The upper boundary in Fig. (6) does not 
influence the result of Fig. (5). This reflects that 
the potential peak near the surface is not 
smoothed by the upper boundary. The effect of 
the boundary is to change the potential 
distribution near the boundary since the charge is 
distributed in the boundary over a very large 
distance compared to the interaction zone. 

The hole creation usually represents the 
extraction process that starts rapidly at the 
beginning of the pulse, then decays with pulse 
decay. Although we have assumed a constant 
size (1×1mm) which represents the ultimate size. 
The presence of hole seems to influence the 
potential distribution since the changes will be 
distributed over a greater area. The maximum 
peak is about 30 times the peak of the surface 
boundary. The effect of upper boundary in Fig. 
(8) only influences the region close to the 
boundary. This is same as in Fig. (6). 

 

Fig. (7) The solution of the problem when the 
charge density is in all Layers and considering a 
fixed hole size (1×1mm) and with only metal surface 
potential boundary data values 
 

The case of Fig. (9) represents the actual 
simulation of the interaction process, where the 

created hole size depends on the laser intensity. 
The potential appears to stay almost constant but 
the width varies with size of the hole. The width 
of the potential always increases with hole size. 

 

Fig. (8) The solution of the problem in the same 
case as before but with Metal surface potential 
boundary data values and with boundary data at 
3mm away from the surface 

Fig. (9) The solution of the problem with hole, and 
we may consider a variable hole size with time but 
with only metal surface potential boundary data 
values 

 
The effect of applying upper boundary with 

dynamic hole creation is presented in Fig. (10). 
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This boundary still only influence the region 
close the boundary, as in Fig. (6) and Fig. (8). 

 

Fig. (10) The solution of the problem in the same 
case as before but with metal surface potential 
boundary data values and with boundary data at 
3mm away from the surface 

6. Conclusions 
According to the results obtained from this 

work, we can conclude that a large change in the 
potential values appears within the interaction 
zone. This will cause a large electric field. This 
means that there is a large force acts on the 
charges leading to a large acceleration and 
collision and therefore provides good ionization 
and absorption conditions. As well, the most 
important advantage of this method is to clearly 
define the position of the Knudsen layer, which 
defines the region where the density, velocity 
and pressure change dramatically. We believe 
that this layer could be studied further using this 
potential method. For comparison, we have 
calculated the potential where boundary voltage, 
charge and hole are removed. The estimated 
maximum potential peak is ten times the surface 
potential. This definitely concludes that the 
surface potential is not a thermoionic emission 
type. This is also supported by the small 
calculated charge derived from thermoionic 
emission in this work. If we consider that the 
charge exists not only on the first layer but in all 
layers, then there is a large change in potential 
arise, whose width is proportional to hole size. 
The amount of the potential gradient depends on 
the charge. The symmetry of the potential 
distribution is affected by the boundary 
condition, while the value of the potential is 
proportional to it. 
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_____________________________________________________________________________________ 
 
Reviewing codes: AP0214/2010/01/IND, AP0214/2010/02/CHN 

Set eight positions in matrix xx (- 0.45 � 0.45) 
Set eight times in matrix tt (0.1msec � 0.8msec) 

Find the upper voltage matrix (VV) by using the function (upbv) for (d,tt) inputs 
Find the charge matrix (roh1) by using the function (charge) for (tt) input 

Store in (m & n) the dimensions of (VV) 
Surround the left and right sides of (VV) with left and right boundary voltages 

ii = 1 � m

Create unity matrix g(d×d) and surround the left and 
right sides with left and right boundary voltages

t = ?

Select the coefficients 
(co1) of the 1st polynomial 
and the lower boundary 
voltage (vbD)  

{ ∑
=

=
n

i

i
iD tcovb

1

1 }

256×10-6 ≥ t ≥ 96×10-6256×10-6 < t ≤ 4×10-4

Select the coefficients 
(co2) of the 2nd polynomial 
and the lower boundary 
voltage (vbD) 

 { ∑
=

=
n

i

i
iD tcovb

1

2 }

Select the coefficients (co3) of 
the third polynomial and the 
lower boundary voltage (vbD) 

{ ∑
=

=
n

i

i
iD tcovb

1

3 }

144×10-5 ≥ t > 4×10-4

Approximate the drop value of hole by using the equation 
(HH = 3×d / 5) and Set (H= HH + 2)

1

2 End 

dep = 0 No

Yes 
Approximate the width of hole by 

using the equation (Hw=d/5)

Find the depth by using the function depth 
Approximate the width of hole by using the 

equation (Hw = dp*(d+2-H)/2) 

Start 
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Fig. (4) Flow chart for the numerical solution of Poisson's equation 
 

End 

Use 3-D surf plot to show V 

ev = 0 Yes

1

i = 0 � Hw - 2 

Put (rohH × 10-2 × Hw) / (h × k) in (BC) matrix at indices of range (HH × d 
+ y + 2 + d × i) � (HH × d + y + Hw – 1+d × i) 

No

Set (v1) equal to the matrix inverse of (A) multiplied by (BC)
Reshape (v1) from 1-D to 2-D (d×d) matrix (rowwise order) and stor the result in (v2) 

V = g and put in all elements of (V) (except the border elements) the element of (v2)
Put the lower boundary voltage (vbD) in all elements of left and right sides of hole and also lower 

half of hole 

Call the subprogram genA2

2

Store in 1-D matrix (vbU) the row of matrix (VV) of index (ii)
Store in 1-D matrix (roh2) the row of matrix (roh1) of index (ii) 

By using trapezoidal method find the result of numeric integration of roh2 with 
respect to positions (xx) and store it in (rohH) 


