

Centralizers With Nilpotent Values

Abdul- Rahman H. Majeed, Faten Adel Shalal*
Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

Abstract

: In this paper, it is shown that if R is a semiprime ring and T a centralizer of R such that $T(x)^{n}=0$ for all $x \in R$, where $n \geq 1$ is a fixed integer then $T=0$.

Keywords: semiprime ring, prime ring, derivation, left (right) centralizer, centralizer, Jordan centralizer.

(المتمركزات مع قيم عديمة القوى

> عبد الرحمن حميد مجيد ، فاتن عادل شلال*
> قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

$$
\text { . T=0 حيث (} \quad \text { (} \quad \text {) هو عدد ثابت صحيح فأن } 1 \text { (} x \in R)
$$

الكلمـات المفتاحيـة : حلقة شبه اولية ، حلقة اولية ، مشتقة ، متمركز يسار (يمين) ، متمركز ، متمركز

- جوردن

Introduction:

Throughout this research R will represent an associative ring. Recall that R is a prime ring if $a R b=0$ implies that $a=0$ or $b=0$ (where $a, b \in R$), and R is semiprime ring if $a R a=0$ implies that $a=0$ (where $a \in R$). A ring R is 2-torsion free if $2 x=0$ implies that $x=0$ (where $x \in R$). An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=x d(y)+d(x) y$ holds for all $x, y \in R$. An additive mapping $T: R \rightarrow R$ is called left (right) centralizer if $T(x y)=T(x) y(T(x y)=x T(y))$ holds for all $x, y \in R . T$ is called centralizer if it is both left and right centralizer. An additive mapping $T: R \rightarrow R$ is called left (right) Jordan centralizer in case $T\left(x^{2}\right)=T(x) x\left(T\left(x^{2}\right)=x T(x)\right)$ holds for all $x \in R$. Following ideas from [1], Zalar has proved in [2] that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. J. Vukman [3] shows that for a semiprime ring R with extended centroid C if $3 T(x y x)=T(x) y x+x T(y) x+x y T(x)$ holds for all $x, y \in R$ then there exists $\alpha \in C$ such that $T(x)=\alpha x$, for all $x \in R$. Other results concerning centralizer in prime and semiprime ring can be found in [4-7]. In [8] it was shown that if R is

[^0]a prime ring and d a derivation of R such that $d(x)^{n}=0$ for all $x \in R$, then $d=0$, and then extend it to the semiprime ring. Here we ask the possibility if the same result can be satisfied on R with replacing the derivation d with centralizer T. First we will prove some simple remarks which we will need them to prove our main result, for a prime ring R :

REMARK 1: If $T \neq 0$ is a centralizer of R and $a T(x)=0$, (or, $T(x) a=0$) for all $x \in R$ then $a=0$ 。
PROOF: Since $a T(x)=0$ for all $x \in R$, then for $r \in R$ we have
$0=a T(r x)=\operatorname{arT}(x)$ for all $r \in R$
Hence $a R T(x)=0$ for all $x \in R$, by the primeness of R and using that $T \neq 0$ we get $a=0$.
REMARK 2: If $T \neq 0$ is a centralizer of R, T does not vanish on a nonzero one sided ideal of R.
PROOF: Let I be a nonzero one sided ideal of R and suppose $T(I)=0$.
Let $a \in I$ and $r \in R$, then
$0=T(a r)=a T(r)$ for all $r \in R$, by Remark 1 we get $a=0$, then $I=0$, a contradiction, hence $T(I) \neq 0$.

REMARK 3: If $L \neq 0$ is a left ideal of R and $W=\{x \in R: L x=0\}$, then L / W is a prime ring.
PROOF: First one can easily show that W is a right ideal of R.
Now we will show that L / W is a prime ring. Let $(x+W)(L / W)(y+W)=W$, where $x, y \in R$, then $(x+W)(l+W)(y+W)=W$, where $l \in L$, this leads to $x l y \in W$, hence $L(x l y)=0$ for all $l \in L$.
Let $r \in R$, hence $L(x r l y)=0$ for all $r \in R, l \in L$, then $(L x) R(L y)=0$, by the primeness of R we get either $L x=0$ or $L y=0$. That is, either $x+W=W$ or $y+W=W$, hence L / W is a prime ring.

REMARK 4: If L is a left ideal of R and $a^{m}=0$, for all $a \in L$, where m is a fixed integer, then $L=0$ 。
PROOF: Suppose $L \neq 0$, then there exists $0 \neq a \in L$ such that $a^{m}=0$. Let $r \in R$
$0=(r a)^{m}=r a r a \ldots r a$, for all $r \in R$, therefore, $(r a) R(a r \ldots r a)=0$, by the primeness of R we get either $r a=0$ or ($a r \ldots r a$) $=0$, if $r a=0$ for all $r \in R, R a=0$, then $a=0$, a contradiction, hence $a r \ldots r a=0$ for all $r \in R$, hence $a R(a r \ldots r a)=0$, again by the primeness of R we get either $a=0$ or ($a r \ldots r a$) $=0$. Continue in this way we end up with $a=0$, a contradiction. Hence $L=0$.

REMARK 5: If $a, b \in R$ and $(a r b)^{m}=0$ for all $r \in R$, where m is a fixed integer, then $b a=0$.
PROOF: If one of a or $b=0$ then the result holds.
Now let $a, b \neq 0$ and $(a r b)^{m}=0$ for all $r \in R$, then $\operatorname{arbarb} \ldots$ arb $=0$ for all $r \in R$, thus $a R(b a r b \ldots a r b)=0$, since R is a prime ring then we have $\operatorname{barb} \ldots$ arb $=0$ for all $r \in R$, hence $b a R(b \ldots a r b)=0$, again since R is a prime then either $b a=0$ or $b a r \ldots \quad \operatorname{arb}=0$. Continue in this way we end up with $b a=0$.

We shall use the following notation throughout:
If S is a subset of R, then $L(S)=\{x \in R: x s=0, \forall s \in S\}$, and $R(S)=\{x \in R: s x=0, \forall s \in R\}$, clearly $L(S)$ is a left ideal and $R(S)$ is a right ideal.

In what follows R will be a prime ring and T a centralizer of R such that $T(x)^{n}=0$ for all $x \in$ R. Our goal will be to show that $T=0$. Proceeding by induction trough out we assume the result to be true for any centralizer G of any prime ring B whenever $G(x)^{m}=0$ for all $x \in B$, if $m<n$. We proceed assuming that $T \neq 0$. Our first result is :

LEMMA 1. For $a \in R, T(L(a)) \subset L(a)$ and $T(R(a)) \subset R(a)$.
PROOF: Let $x \in L(a)$ then $x a=0$,
$0=T(x a)=T(x) a$ for all $x \in L(a)$, therefore, $T(x) \in L(a)$ for all $x \in L(a)$. Hence $T(L(a)) \subset L(a)$.
Similarly one can show that $T(R(a)) \subset R(a)$.
LEMMA 2. If $a \in R$, then either $T(a R) a=0$ or $L(a) T(L(a))=0$. Similarly, either $a T(a R)=0$ or $T(R(a)) R(a)=0$.
PROOF: Let $x, y \in L(a)$. Using Lemma 1 we have that $T(y) a x=0$. Then,
$0=T(T(y) a x)=T(y) T(a x)$ for all $y \in L(a)$
Since $a x \in L(a)$, then we can replace y by $a x$ in (1), hence, $T(a x)^{2}=0$. Now
$0=T(a x+y)^{n}=(T(a x)+T(y))^{n}=T(a x) T(y)^{n-1}$ for all $x \in L(a)$
Let $r \in R$, then by using (2) we get that, $T(\operatorname{arax}) T(y)^{n-1}=0$, that is, $T(\operatorname{ar}) \operatorname{axT} T(y)^{n-1}=0$, for all $x \in L(a)$, hence $T(a r) a L(a) T(y)^{n-1}=0$.
If $L(a) T(y)^{n-1} \neq 0$, since $L(a) T(y)^{n-1}$ is a left ideal of a prime ring R, then
$T(a r) a \in a n n_{l}\left(L(a) T(y)^{n-1}=0\right.$, therefore, $T(a r) a=0$, for all $r \in R$, hence $T(a R) a=0$. On the other hand if $L(a) T(y)^{n-1}=0$ for all $y \in L(a)$. Let $W=\{x \in L(a): L(a) x=0\}$ since $T(W) \subset W$ and $T(L(a)) \subset L(a), T$ induces a centralizer on $B=L(a) / W$. By Remark $3 B$ is a prime ring. The fact that $L(a) T(y)^{n-1}=0$ for all $y \in L(a)$ gives us that $T(y)^{n-1} \in W$ for all $y \in L(a)$, this gives us that $T(b)^{n-1}=0$ for all $b \in B$, then by our induction we get that $T(b)=0$ for all $b \in B$, this leads us to $T(L(a)) \subset W$, and hence $T(L(a)) L(a)=0$.
Similarly one can show that either $T(R(a)) \subset R(a)$ or $a T(a R)=0$.
Lemma 2 has singled out for us two classes of elements which have rather particular properties, and which prompt the following definition:

DEFINITION: $A=\{a \in R: a T(R a)=0\}$, and $B=\{a \in R: T(a R) a=0\}$.
These two subsets A and B play a key rule in what is follows. Their basic algebraic behavior is expressed in the following Lemma:

LEMMA 3: A is a nonzero left ideal of R, B is a nonzero right ideal of R and $A B=0$. Furthermore $T(A) \subset A, T(B) \subset B$ and $A T(A)=B T(B)=0$.
PROOF: Since the proof for the stated properties of A and B are the same, we merely prove that $B \neq 0$ is a right ideal of $R, T(B) \subset B$ and $T(B) B=0$.
Our first assertion is that if $a, b \in R$ are such that $L(a) T(L(a))=0$ and $L(b) T(L(b))=0$ then $L(b) T(L(a)=0$.
To see this, let $x \in L(a), z, t \in L(b)$, then,
$0=t T(x z)=t T(x) z$ for all $z \in L(b)$, that is $t T(x) L(b)=0$, hence by the primeness of R we get that $t T(x)=0$ for all $t \in L(b)$ and $x \in L(a)$. So

$$
\begin{equation*}
L(b) T(L(b))=0 \tag{3}
\end{equation*}
$$

Thus our assertion has been verified .

Claim 1: $B \neq 0.0$
Suppose that $B=0$, then by Lemma 2 we have that $L(u) T(L(u))=0$ for all $u \in R$, then by (3) we have that
$L(u) T(L(v))=0$ for all $u, v \in R$
Pick $v \in R$ such that $L(v) \neq 0$, by Remark $2, T(L(v)) \neq 0$. Since $T(x)^{n}=0$ for all $x \in R$ then $T(x) \in L\left(T(x)^{n-1}\right)$. Let $u=T(x)^{n-1}$ in (4) then we have that $T(x) L(v)=0$, so by Remark 1 $T(L(v))=0$, a contradiction since $T(L(v)) \neq 0$, hence $B \neq 0$.
Claim 2: B is a right ideal of R.
We need to show first for $x \in R$ and $a \in B$ then $a x \in B$.
Since $T(a x R) a x \subset T(a R) a x=0$, therefore $T(a x R) a x=0$, hence $a x \in B$.
Now we shall show that $a+b \in B$ for $a, b \in B$ and $a, b \neq 0$. Since $T(b R) b=0$, we have that $T(b R a R) b \subset T(b R) b=0$,
$0=T(b R a R) b=T(b R) a R b$. Since R is prime and $b \neq 0$, then $T(b R) a=0$. Similarly one can show that $T(a R) b=0$. Therefore,
$T((a+b) R)(a+b)=T(a R+b R)(a+b)=T(a R) a+T(a R) b+T(b R) a+T(b R) b=0$, hence $a+b \in B$. Then B is a right ideal.

Claim 3:T(B) $\subset B$.
Let $x \in B, r \in R$, then:
$T(T(x) r) T(x)=T(T(x r)) T(x)=T^{2}(x r) T(x)=T\left(T^{2}(x r) x\right)$ for all $r \in R$. hence since $x \in B$ we have that $T(T(x) R) T(x)=T\left(T^{2}(x R) x\right) \subset T(T(x R) x)=0$, then $T(T(x) R) T(x)=0$, hence $T(x) \in B$ for all $x \in B$, then $T(B) \subset B$.
Claim $4: T(B) B=0$.
If $a, b \in B$ we saw that $T(a R) b=0$, hence $T(a b R b)=0$, that is $T(a) b R b=0$, since R is prime then $T(a) b=0$ for all $a, b \in B$, hence $T(B) B=0$.
Claim $5: A B=0$
Let $a \in A$ and $b \in B$,
$0=T(a b)^{n} T(a)=(T(a) b)^{n} T(a)$, therefore $(T(a) b)^{n+1}=0$ for all $b \in B$, since $T(a) B$ is a right ideal, then by Remark 3 we get that $d(a) B=0$ for all $a \in A$, thus $T(A) B=0$, and so since A is a left ideal of R, then
$0=T(R A) B=T(R) A B$, and hence by Remark 1 we get that $A B=0$.

LEMMA 4: If $t \in R$ and $t^{2}=0$, then $t \in A \cup B$.
PROOF: Suppose that $t \notin B$, by Lemma $2, L(t) T(L(t))=0$. However, since $t^{2}=0, t \in L(t)$ and $R t \subset L(t)$, then $t T(R t)=0$, by definition of A this forces $t \in A$, hence $t \in A \cup B$. Since $A \neq 0, B \neq 0$ are respectively left and right ideals of the prime ring $R, C=A \cap B \supset B A \neq 0$. ($B A \neq 0$ since if $B A=0$, then $B \in \operatorname{ann}_{l}(A)=0$, hence $B=0$, a contradiction). So $C \neq 0$.
Our attention will be concentrated on the nature of C.
If $a \in C$ and $t^{2}=0$ then, if $t \in A, t a \in A C \subset A B=0$. If $a \in B$ we get $a t=0$. In light of Lemma (4) we then must have that $a t=0$ or $t a=0$. Consequently $a t a=0$.

We claim $a s a=0$ for all nilpotent elements s in R. If $s^{2}=0$ we just saw that asa=0. Proceeding by induction on the index of nilpotence of s we may assume that $a s^{i} a=0$ for all $i>1$. Now
$b=(1+s) a(1+s)^{-1}=(1+s) a\left(1-s+s^{2} \ldots\right)$

Satisfies $b^{2}=0$, so by Lemma 4 we have $a b=0$ or $b a=0$, if $a b=0$ we get that $a s a=0$; on the other hand, if $b a=0$ we get, using $a s^{i} a=0$ for $i>1$, that $a s a=0$. Hence $a s a=0$ for all nilpotent elements $s \in R$.
Now since $T(x)$ is nilpotent for every $x \in R$, then $a T(x) a=0$. However since $a \in R \subset A$, $a T(R a)=0$, thus, $a R T(a)=0$. Because R is prime we have $T(a)=0$. Hence:
LEMMA 5: If $a \in C$, then $T(a)=0$.
We continue with the argument we were making. Let $a \in C$, since $T(x)$ is nilpotent we have $a T(x) a=0=a T(x)^{2} a$. Because $a^{2} \in C^{2} \subset A B=0$, we have that $(a T(x)-T(x) a)^{2}=a T(x) a T(x)-a T(x)^{2} a-T(x) a^{2} T(x)-T(x) a T(x) a=0$.
But then by Lemma $4, a T(x)-T(x) a \in A \cup B$ for all $x \in R$. Suppose that $a T(x)-T(x) a \in A$, say; since $a \in C \subset A, T(x) a \in A$, hence $a T(x) \in A$. If $a T(x)-T(x) a \in B$, similarly we get $T(x) a \in B$. So, for every $x \in R$ either $a T(x) \in A$ or $T(x) a \in B$.This implies that $a T(R) \subset A$ or $T(R) a \subset B$. If $a T(R) \subset A$, then since $a \in C \subset B, B$ is a right ideal; $a T(R) \subset B$, hence $a T(R) \subset$ C. Similarly, if $T(R) a \subset B$ we get $T(R) a \subset C$. So, for every $a \in C, a T(R) \subset C$ or $T(R) a \subset C$. This implies $C T(R) \subset C$ or $T(R) C \subset C$.
Suppose that $C T(R) \subset C$, hence $C T(R) T(A) \subset C T(A) \subset A T(A)=0$. Now $B A \subset C$, thus $B A T(R) T(A) \subset C T(R) T(A)=0$, because R is prime this forces $A T(R) T(A)=0$. Consider the left ideal $A T(R)$ of R, let $x=\sum a_{i} T\left(r_{i}\right), a_{i} \in A, r_{i} \in R$ be any element in $A T(R)$. Thus if $v=\sum a_{i} r_{i}$, then :
$T(v)=T\left(\sum a_{i} r_{i}\right)=\sum a_{i} T\left(r_{i}\right)=x$. Therefore, $0=T(v)^{n}=x^{n}$.
In other words, every element in $A T(R)$ is nilpotent of degree at most n. By Remark $4 \operatorname{AT}(R)=0$. Since $A \neq 0$ by Remark 1 we are forced to $T(R)=0$, and so $T=0$.
Similarly if we had supposed that $T(R) C \subset C$ we would have been led to $T(R) B=0$ and so to $T=0$. We have therefore proved :

THEOREM 1. If R is a prime ring and T a centralizer of R such that $T(x)^{n}=0$ for all $x \in R$, where $n \geq 1$ is a fixed integer, then $T=0$.

THEOREM 2. Let R be a prime ring, $I \neq 0$ an ideal of R, and T a centralizer of R such that $T(x)^{n}=0$ for all $x \in I$, where $n \geq 1$ is a fixed integer, then $T=0$.
PROOF: Let $I \neq 0$ be an ideal of R.
Claim $1:$ If R is a prime ring then I is a prime subring of R.
Since every ideal is subring then I is subring. Now, let $a, b \in I$ and $a I b=0$, since I is ideal then $a R I b \subset a I b=0$, by the primness of R either $a=0$ or $b=0$, hence I is a prime ring .
Case 1: If $T(I) \subset I$, then T induces a centralizer T of I, and since $T(x)^{n}=0$ for all $x \in I$, we get by claim 1 and Theorem 1 that $T(I)=0$, and by theorem (If $T(I)=0$ for some one sided ideal of R, then $T(R)=0$), hence $T(R)=0$.
Case 2: If $T(I) \not \subset I$, assume $T \neq 0$ on R.
Claim 2: If $T \neq 0$ a centralizer of R and $a T(x)=0$ (or $T(x) a=0$) for all $x \in I$, then $a=0$.
Let $r \in R$, then
$0=a T(r x)=\operatorname{arT}(x)$, for all $r \in R$, so $\operatorname{aRT}(x)=0$, since R is prime then either $a=0$ or $T(x)=0$ for all $x \in I$, if $T(x)=0$ for all $x \in I$, then $T(I)=0$, and $\operatorname{so} T(R)=0$. a contradiction. Hence $a=0$.
Now, since $T(x)^{n}=0$ for all $x \in I$, then $T(x) T(x)^{n-1}=0$ for all $x \in I$, hence by claim 2 $T(x)^{n-1}=0$. Continue in the same way and by using claim 2 we end up with $T(x)=0$ for all $x \in I$, thus $T(I)=0$, this leads to $T(R)=0$, a contradiction. Hence $T=0$.

Now Theorem 1 can be extended to semiprime rings:

THEOREM 3. If R is a semiprime ring and T a centralizer of R such that $T(x)^{n}=0$ for all $x \in R$, where $n \geq 1$ is a fixed integer, then $T=0$.
PROOF: Since R is semiprime ring, $\cap P=0$, where P is a prime ideal of R (see [9] page 115).
Claim : $T(P) \subset P$ for every prime ideal P.
Let $a \in P, x \in R$;
$0=T(a x)^{n}=(T(a) x)^{n}$ for all $x \in R$. Hence the right ideal $T(a) R$ is nil of bounded index, then R has a nilpotent ideal which it is cannot since R is semiprime, therefore, $T(a) R=0$, hence $T(a)=0$ for all $a \in P$, then $T(P)=0$, so $T(P) \subset P \quad$ for all prime ideals P of R, and so T induces a centralizer \bar{T} on the prime ring $\bar{R}=R / P$, such that $\bar{T}(\bar{x})^{n}=0$ for all $\bar{x} \in \bar{R}$, by Theorem $1, \bar{T}=0$. Hence $\bar{T}(\bar{R})=0$, that is,$T(R) \subset P$ for all prime ideals P of R.
Since $\cap P=0$, we obtain that $T(R)=0$, hence $T=0$.

References:

1. Bresar M. 1988, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104, pp: 10031006.
2. B.Zalar 1991, On centralizer of semiprime rings, Comment. Math. Univ. Carolinae, 32, pp: 609614.
3. J. Vukman, I. Kusi- Ulbl 2003, An equation related centralizers in semiprime rings, Univ. of Maribor, Slovenia, 35 (58), pp: 253-261.
4. J.Vukman 1997, Centralizers on prime and semiprime rings, Comment. Math. Univ. Carolinae, .38, pp: 231-240 .
5. J. Vukman and M. Fosner 2007, A characterization of two sided centralizers on prime rings, Taiwanese J. of Math. , 11 (5), pp: 1431-1441.
6. J. Vukman 2001, Centralizers of semiprime rings, Comment. Math. Univ. Carolinae, 42 (2), pp: $237-245$.
7. J. Vukman 1991, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae, 40 (3), pp: $447-456$.
8. A. Giambruno, I.N.Herstein 1981, Derivations with nilpotent values, Rendiconti del Circolo Matematico di Palermo, 2 (3), pp: 199-206.
9. Frank W. Anderson 2002, Lectures on non-commutative ring, University of Oregon.

[^0]: *Email: ftoonmath@ymial.com

