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ABSTRACT: 

      In this paper , it is shown that if  𝑅  is a semiprime ring and 𝑇 a centralizer of 𝑅  

such that 𝑇 𝑥 𝑛  = 0 for all 𝑥 ∈ 𝑅  , where 𝑛 ≥ 1 is a fixed integer then 𝑇 = 0. 
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مع قيم عديمة القوى  المتمركزات
 

 *فاتن عادل شلالعبد الرحمن حميد مجيد ، 
العراق , بغداد, جامعة بغداد, كمية العموم, قسم الرياضيات

 : لاصةالخ
𝑇 𝑥 𝑛بحيث ان    Rمن  Tومتمركز  R   ة شبه اوليةسنبين في هذا البحث انه لحمق     لكل    0 = 

 (𝑥 ∈ 𝑅)   حيث𝑛 ≥ .   𝑇= 0هو عدد ثابت صحيح فأن  (  (1
متمركز , متمركز , ( يمين)متمركز  يسار , مشتقة , حمقة اولية  ,حمقة شبه اولية : الكممـــات المفتــاحيــة 

 .جوردن 
 

Introduction: 

     Throughout this research  𝑅 will represent an associative ring. Recall that 𝑅 is a prime ring if  

a𝑅b=0  implies that  a=0 or b=0 ( where a ,b∈ 𝑅) , and  𝑅 is semiprime ring if  a𝑅a=0  implies that 

a=0 (where a ∈ 𝑅) . A ring  𝑅  is 2-torsion free if  2x=0  implies that  x=0 (where 𝑥 ∈ 𝑅) . An 

additive mapping  𝑑: 𝑅 → 𝑅 is called a derivation if  𝑑 𝑥𝑦 = 𝑥𝑑 𝑦 + 𝑑 𝑥 𝑦  holds for all  𝑥, 𝑦 ∈ 𝑅 . 

An additive mapping  𝑇: 𝑅 → 𝑅  is called left (right) centralizer if  𝑇 𝑥𝑦 = 𝑇(𝑥)𝑦 (𝑇(𝑥𝑦) = 𝑥 𝑇(𝑦))  

holds  for all 𝑥 , 𝑦 ∈ 𝑅 . T  is called centralizer if it is both left and  right centralizer . An additive 

mapping  𝑇:𝑅 → 𝑅  is called left (right) Jordan centralizer  in  case  𝑇 𝑥2 = 𝑇 𝑥 𝑥  𝑇 𝑥2 = 𝑥𝑇 𝑥    

holds for all  𝑥 ∈ 𝑅. Following ideas from [1], Zalar has proved in [2] that any left (right) Jordan 

centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. J. Vukman [3] shows that for 

a semiprime ring 𝑅 with extended centroid C if  3𝑇 𝑥𝑦𝑥 = 𝑇 𝑥 𝑦𝑥 + 𝑥𝑇 𝑦 𝑥 + 𝑥𝑦𝑇 𝑥   holds for 

all 𝑥, 𝑦 ∈ 𝑅 then there exists 𝛼 ∈ 𝐶 such that  𝑇 𝑥 = 𝛼𝑥 , for all  𝑥 ∈ 𝑅 .Other results concerning 

centralizer in prime  and  semiprime  ring  can  be  found  in  [4 - 7] . In  [8]  it was  shown  that if  𝑅 is 
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a prime ring and  𝑑  a derivation of  𝑅  such that  𝑑 𝑥 𝑛 = 0  for all 𝑥 ∈ 𝑅  , then  𝑑 = 0 , and then 

extend it to the semiprime ring. Here we ask the possibility if the same result can be satisfied on 𝑅 

with replacing the derivation d with centralizer T. First we will prove some simple remarks which we 

will need them to prove our main result, for a prime ring 𝑅 ∶  

 

REMARK 1: If  𝑇 ≠ 0 is a centralizer of 𝑅  and  𝑎𝑇 𝑥 = 0, (or, 𝑇 𝑥 𝑎 = 0)  for all  𝑥 ∈ 𝑅  then 

𝑎 = 0 . 

PROOF:  Since  𝑎𝑇 𝑥 = 0   for all  𝑥 ∈ 𝑅  , then for  𝑟 ∈ 𝑅  we have  

0 = 𝑎𝑇 𝑟𝑥 = 𝑎𝑟𝑇 𝑥   for all  𝑟 ∈ 𝑅   

Hence  𝑎𝑅𝑇 𝑥 = 0  for all  𝑥 ∈ 𝑅 , by the primeness of   𝑅  and using that  𝑇 ≠ 0  we get  𝑎 = 0  . 

REMARK  2:  If  𝑇 ≠ 0  is a centralizer of 𝑅  , 𝑇 does not vanish on a nonzero one sided ideal of  𝑅  .  

PROOF:  Let  I   be a nonzero one sided ideal of  𝑅  and suppose  𝑇 𝐼 = 0 . 

Let 𝑎 ∈ 𝐼  and  𝑟 ∈ 𝑅 , then 

0 = 𝑇 𝑎𝑟 = 𝑎𝑇 𝑟   for all  𝑟 ∈ 𝑅 , by Remark 1 we get 𝑎 = 0 , then  I = 0, a contradiction, hence 

𝑇 𝐼 ≠ 0 . 

 

REMARK 3:  If  𝐿 ≠ 0  is a left  ideal of  𝑅  and  𝑊 =  𝑥 ∈ 𝑅 ∶ 𝐿𝑥 = 0  , then 𝐿 𝑊  is a prime ring. 

PROOF: First one can easily show that 𝑊 is a right  ideal of  𝑅 . 

Now we will show that  L 𝑊  is a prime ring . Let  𝑥 + 𝑊 (𝐿 𝑊)  𝑦 + 𝑊 = 𝑊  , where  𝑥, 𝑦 ∈ 𝑅, 

then  𝑥 + 𝑊  𝑙 + 𝑊  𝑦 + 𝑊 = 𝑊, where  𝑙 ∈ 𝐿 , this leads to   𝑥𝑙𝑦 ∈ 𝑊 , hence  𝐿 𝑥𝑙𝑦 = 0  for 

all  𝑙 ∈ 𝐿 . 

Let  𝑟 ∈ 𝑅 , hence  𝐿 𝑥𝑟𝑙𝑦 = 0  for all  𝑟 ∈ 𝑅 , 𝑙 ∈ 𝐿  ,then  (𝐿𝑥)𝑅 𝐿𝑦 = 0 , by the primeness of  𝑅 

we get either  𝐿𝑥 = 0  or  𝐿𝑦 = 0 . That is, either  𝑥 + 𝑊 = 𝑊  or  𝑦 + 𝑊 = 𝑊 , hence  𝐿 𝑊  is a 

prime ring . 

 

REMARK 4:  If  𝐿  is a left  ideal of  𝑅  and  𝑎𝑚 = 0 ,for all  𝑎 ∈ 𝐿, where  𝑚  is a fixed integer, then 

𝐿 = 0 . 

PROOF: Suppose  𝐿 ≠ 0 , then there  exists 0 ≠ 𝑎 ∈ 𝐿 such that  𝑎𝑚 = 0 . Let  𝑟 ∈ 𝑅 

0 =   𝑟𝑎 𝑚 = 𝑟𝑎𝑟𝑎 … 𝑟𝑎  , for all  𝑟 ∈ 𝑅 , therefore ,   𝑟𝑎 𝑅(𝑎𝑟 …  𝑟𝑎) = 0 , by the primeness of  𝑅 

we get either  𝑟𝑎 = 0 or  (𝑎𝑟…  𝑟𝑎) = 0 , if  𝑟𝑎 = 0  for all  𝑟 ∈ 𝑅 ,  𝑅𝑎 = 0 , then  𝑎 = 0 , a 

contradiction , hence 𝑎𝑟… 𝑟𝑎 = 0  for all 𝑟 ∈ 𝑅 , hence  𝑎𝑅(𝑎𝑟…  𝑟𝑎) = 0 , again by the primeness of 

 𝑅 we get either  𝑎 = 0 or  (𝑎𝑟…  𝑟𝑎) = 0 . Continue in this way we end up with   𝑎 = 0  , a 

contradiction . Hence  𝐿 = 0 . 

 

REMARK 5:  If  𝑎, 𝑏 ∈ 𝑅 and   𝑎𝑟𝑏 𝑚 = 0  for all  𝑟 ∈ 𝑅  , where  𝑚  is a fixed integer , then 

𝑏𝑎 = 0 .  

PROOF: If one of  𝑎  or  𝑏 = 0  then the result  holds.  

Now  let  𝑎, 𝑏 ≠ 0  and    𝑎𝑟𝑏 𝑚 = 0  for all  𝑟 ∈ 𝑅  , then   𝑎𝑟𝑏𝑎𝑟𝑏…  𝑎𝑟𝑏 = 0   for all  𝑟 ∈ 𝑅 ,thus    

𝑎𝑅(𝑏𝑎𝑟𝑏… 𝑎𝑟𝑏) = 0 , since  𝑅  is a prime ring  then we  have  𝑏𝑎𝑟𝑏…  𝑎𝑟𝑏 = 0   for all  𝑟 ∈ 𝑅   ,   

hence  𝑏𝑎𝑅(𝑏… 𝑎𝑟𝑏) = 0 , again since 𝑅  is a prime then either  𝑏𝑎 = 0 or  𝑏𝑎𝑟…  𝑎𝑟𝑏 = 0. 

Continue in this way we end up with  𝑏𝑎 = 0 .   

 

       We shall use the following notation throughout: 

If  𝑆  is a subset of 𝑅 , then  𝐿 𝑆 = {𝑥 ∈ 𝑅: 𝑥𝑠 = 0 , ∀𝑠 ∈ 𝑆} , and  𝑅 𝑆 = {𝑥 ∈ 𝑅: 𝑠𝑥 = 0, ∀𝑠 ∈ 𝑅} , 

clearly 𝐿 𝑆  is a left  ideal and  𝑅 𝑆  is a right ideal. 
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      In what follows  𝑅 will be a prime ring and 𝑇 a centralizer of  𝑅 such that  𝑇 𝑥 𝑛 = 0  for all  𝑥 ∈

𝑅 . Our goal will be to show that  𝑇 = 0 . Proceeding by induction trough out we assume the result to 

be true for any centralizer  𝐺 of any prime ring 𝐵  whenever  𝐺 𝑥 𝑚 = 0  for all  𝑥 ∈ 𝐵 , if  𝑚 < 𝑛 .  

We proceed assuming that  𝑇 ≠ 0 . Our first  result is : 

 

LEMMA 1. For  𝑎 ∈ 𝑅 , 𝑇(𝐿 𝑎 ) ⊂ 𝐿(𝑎)  and   𝑇(𝑅 𝑎 ) ⊂ 𝑅(𝑎). 

PROOF: Let  𝑥 ∈ 𝐿(𝑎)   then   𝑥𝑎 = 0 , 

0 = 𝑇 𝑥𝑎 = 𝑇 𝑥 𝑎  for all  𝑥 ∈ 𝐿(𝑎) , therefore,  𝑇(𝑥) ∈ 𝐿(𝑎)  for all 𝑥 ∈ 𝐿(𝑎) . Hence 

 𝑇(𝐿(𝑎)) ⊂ 𝐿(𝑎) .  

Similarly one can show that   𝑇(𝑅 𝑎 ) ⊂ 𝑅(𝑎) . 

 

LEMMA 2. If  𝑎 ∈ 𝑅, then either  𝑇 𝑎𝑅 𝑎 = 0  or  𝐿 𝑎 𝑇 𝐿 𝑎  = 0 . Similarly, either  𝑎𝑇 𝑎𝑅 = 0 

or  𝑇 𝑅 𝑎  𝑅 𝑎 = 0. 

PROOF: Let  𝑥, 𝑦 ∈ 𝐿(𝑎) . Using Lemma 1 we have that  𝑇 𝑦 𝑎𝑥 = 0. Then, 

 0 = 𝑇 𝑇 𝑦 𝑎𝑥 = 𝑇 𝑦 𝑇 𝑎𝑥   for all  𝑦 ∈ 𝐿(𝑎)                                                                  (1) 

Since  𝑎𝑥 ∈ 𝐿 𝑎 , then we can replace  𝑦 by  𝑎𝑥  in (1) , hence, 𝑇(𝑎𝑥)2 = 0 . Now 

0 = 𝑇 𝑎𝑥 + 𝑦 𝑛 =  𝑇 𝑎𝑥 + 𝑇 𝑦  
𝑛

= 𝑇 𝑎𝑥 𝑇 𝑦 𝑛−1   for all   𝑥 ∈ 𝐿(𝑎)                         (2) 

Let  𝑟 ∈ 𝑅 , then by using (2) we get that , 𝑇 𝑎𝑟𝑎𝑥 𝑇 𝑦 𝑛−1 = 0 , that is, 𝑇 𝑎𝑟 𝑎𝑥𝑇 𝑦 𝑛−1 = 0 , for 

all  𝑥 ∈ 𝐿 𝑎   , hence  𝑇 𝑎𝑟 𝑎𝐿 𝑎 𝑇(𝑦)𝑛−1 = 0 . 

If  𝐿 𝑎  𝑇 𝑦 𝑛−1 ≠ 0  , since 𝐿 𝑎  𝑇 𝑦 𝑛−1  is a left ideal of a prime ring 𝑅 , then  

𝑇 𝑎𝑟 𝑎 ∈ 𝑎𝑛𝑛𝑙  (𝐿 𝑎 𝑇 𝑦 𝑛−1 = 0 , therefore, 𝑇 𝑎𝑟 𝑎 = 0 , for all  𝑟 ∈ 𝑅 , hence  𝑇 𝑎𝑅 𝑎 = 0 . On 

the other hand if  𝐿 𝑎 𝑇 𝑦 𝑛−1 = 0  for all  𝑦 ∈ 𝐿 𝑎  . Let 𝑊 =  𝑥 ∈ 𝐿 𝑎 :𝐿 𝑎 𝑥 = 0  since 

𝑇 𝑊 ⊂ 𝑊 and  𝑇 𝐿 𝑎  ⊂ 𝐿 𝑎  , 𝑇 induces a centralizer on 𝐵 = 𝐿 𝑎 𝑊  . By Remark 3 𝐵 is a 

prime ring. The fact that  𝐿 𝑎 𝑇 𝑦 𝑛−1 = 0   for all  𝑦 ∈ 𝐿 𝑎  gives us that  𝑇 𝑦 𝑛−1 ∈ 𝑊  for all 

𝑦 ∈ 𝐿 𝑎 , this gives us that  𝑇 𝑏 𝑛−1 = 0  for all  𝑏 ∈ 𝐵, then by our induction we get that  𝑇 𝑏 = 0  

for all  𝑏 ∈ 𝐵, this leads us to  𝑇(𝐿 𝑎 ) ⊂ 𝑊 , and hence  𝑇 𝐿 𝑎   𝐿 𝑎 = 0 . 

Similarly one can show that either 𝑇(𝑅 𝑎 ) ⊂ 𝑅(𝑎) or 𝑎𝑇 𝑎𝑅 = 0 . 

 

       Lemma 2 has singled out for us two classes of elements which have rather particular properties, 

and which prompt the following definition:  

                                 

DEFINITION:  𝐴 =  𝑎 ∈ 𝑅: 𝑎𝑇 𝑅𝑎 = 0 ,  and  𝐵 =  𝑎 ∈ 𝑅: 𝑇 𝑎𝑅 𝑎 = 0 .   

     These two subsets 𝐴 and 𝐵 play a key rule in what is follows. Their basic algebraic behavior is 

expressed in the following Lemma:  

                                              

LEMMA 3:  𝐴  is a nonzero left ideal of 𝑅 , 𝐵 is a nonzero right ideal of 𝑅 and  𝐴𝐵 = 0 . Furthermore  

𝑇 𝐴 ⊂ 𝐴 , 𝑇(𝐵) ⊂ 𝐵 and 𝐴𝑇 𝐴 = 𝐵𝑇 𝐵 = 0 .                       

PROOF:  Since  the proof  for the stated  properties of  A  and  B  are the same, we merely prove that 

𝐵 ≠ 0 is  a right ideal of 𝑅 , 𝑇(𝐵) ⊂ 𝐵  and   𝑇 𝐵 𝐵 = 0 .                    

Our first assertion is that if  𝑎, 𝑏 ∈ 𝑅 are such that  𝐿 𝑎 𝑇 𝐿 𝑎  = 0 and   𝐿 𝑏 𝑇 𝐿 𝑏  = 0 then 

𝐿 𝑏 𝑇(𝐿 𝑎 = 0 . 

To see this, let   𝑥 ∈ 𝐿 𝑎   , 𝑧, 𝑡 ∈ 𝐿 𝑏  , then , 

0 = 𝑡𝑇 𝑥𝑧 = 𝑡𝑇 𝑥 𝑧  for all   𝑧 ∈ 𝐿(𝑏) , that is   𝑡𝑇 𝑥 𝐿 𝑏 = 0 , hence by the primeness of  𝑅 we 

get that  𝑡𝑇 𝑥 = 0   for all   𝑡 ∈ 𝐿 𝑏   and  𝑥 ∈ 𝐿 𝑎  . So 

  𝐿 𝑏 𝑇 𝐿 𝑏  = 0                                                                                                                (3) 

Thus our assertion has been verified . 
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Claim 1: 𝐵 ≠ 0 .0 

Suppose that 𝐵 = 0 , then by Lemma 2 we have that  𝐿 𝑢 𝑇 𝐿 𝑢  = 0   for all  𝑢 ∈ 𝑅 , then by (3) 

we have  that 

𝐿 𝑢 𝑇 𝐿 𝑣  = 0  for all   𝑢, 𝑣 ∈ 𝑅                                                                                     (4) 

Pick  𝑣 ∈ 𝑅 such that  𝐿 𝑣 ≠ 0  , by Remark 2 , 𝑇 𝐿 𝑣  ≠ 0 . Since 𝑇 𝑥 𝑛 = 0   for all 𝑥 ∈ 𝑅 then 

𝑇(𝑥) ∈ 𝐿(𝑇 𝑥 𝑛−1) . Let  𝑢 = 𝑇(𝑥)𝑛−1   in (4) then we have that  𝑇 𝑥 𝐿 𝑣 = 0 , so  by  Remark 1  

 𝑇 𝐿 𝑣  = 0 , a contradiction  since 𝑇(𝐿 𝑣 ) ≠ 0 ,  hence 𝐵 ≠ 0 .  

Claim 2 : 𝐵  is a right ideal of  𝑅 . 

We need to show first  for  𝑥 ∈ 𝑅 and 𝑎 ∈ 𝐵 then  𝑎𝑥 ∈ 𝐵 . 

Since 𝑇 𝑎𝑥𝑅 𝑎𝑥 ⊂ 𝑇 𝑎𝑅 𝑎𝑥 = 0  , therefore  𝑇 𝑎𝑥𝑅 𝑎𝑥 = 0 ,  hence  𝑎𝑥 ∈ 𝐵 . 

Now  we  shall  show  that  𝑎 + 𝑏 ∈ 𝐵 for  𝑎, 𝑏 ∈ 𝐵  and  𝑎, 𝑏 ≠ 0 .  Since  𝑇 𝑏𝑅 𝑏 = 0 ,  we have that  

𝑇 𝑏𝑅𝑎𝑅 𝑏 ⊂ 𝑇 𝑏𝑅 𝑏 = 0 ,   

0 = 𝑇 𝑏𝑅𝑎𝑅 𝑏 = 𝑇 𝑏𝑅 𝑎𝑅𝑏 . Since 𝑅 is prime and  𝑏 ≠ 0, then 𝑇 𝑏𝑅 𝑎 = 0 . Similarly one can 

show that 𝑇 𝑎𝑅 𝑏 = 0 . Therefore, 

𝑇  𝑎 + 𝑏 𝑅  𝑎 + 𝑏 = 𝑇 𝑎𝑅 + 𝑏𝑅  𝑎 + 𝑏 = 𝑇 𝑎𝑅 𝑎 + 𝑇 𝑎𝑅 𝑏 + 𝑇 𝑏𝑅 𝑎 + 𝑇 𝑏𝑅 𝑏 = 0 , hence 

𝑎 + 𝑏 ∈ 𝐵 . Then 𝐵 is a right ideal.  

 

Claim 3 : 𝑇(𝐵) ⊂ 𝐵 . 

Let  𝑥 ∈ 𝐵 , 𝑟 ∈ 𝑅 , then: 

𝑇 𝑇 𝑥 𝑟 𝑇 𝑥 = 𝑇 𝑇 𝑥𝑟  𝑇 𝑥 = 𝑇2 𝑥𝑟 𝑇 𝑥 = 𝑇 𝑇2 𝑥𝑟 𝑥    for all  𝑟 ∈ 𝑅 . hence since 𝑥 ∈ 𝐵  

we have that 𝑇 𝑇 𝑥 𝑅 𝑇 𝑥 = 𝑇 𝑇2 𝑥𝑅 𝑥 ⊂ 𝑇 𝑇 𝑥𝑅 𝑥 = 0, then 𝑇 𝑇 𝑥 𝑅 𝑇 𝑥 = 0 , hence 

 𝑇 𝑥 ∈ 𝐵  for all   𝑥 ∈ 𝐵, then  𝑇(𝐵) ⊂ 𝐵.  

Claim 4 : 𝑇 𝐵 𝐵 = 0. 

If  𝑎, 𝑏 ∈ 𝐵  we saw that  𝑇 𝑎𝑅 𝑏 = 0 , hence  𝑇 𝑎𝑏𝑅𝑏 = 0 , that is   𝑇 𝑎 𝑏𝑅𝑏 = 0 , since 𝑅 is prime 

then  𝑇 𝑎 𝑏 = 0  for all   𝑎, 𝑏 ∈ 𝐵 , hence  𝑇 𝐵 𝐵 = 0 . 

Claim 5 : 𝐴𝐵 = 0 

Let  𝑎 ∈ 𝐴 and  𝑏 ∈ 𝐵 , 

0 = 𝑇 𝑎𝑏 𝑛  𝑇 𝑎 =  𝑇 𝑎 𝑏 𝑛  𝑇 𝑎 ,  therefore   𝑇 𝑎 𝑏 𝑛+1 = 0  for all  𝑏 ∈ 𝐵 , since  𝑇 𝑎 𝐵  is a 

right ideal , then by Remark 3  we get that  𝑑 𝑎 𝐵 = 0  for all  𝑎 ∈ 𝐴 , thus  𝑇 𝐴 𝐵 = 0 , and so since 

𝐴  is a left ideal of  𝑅 ,  then 

 0 = 𝑇 𝑅𝐴 𝐵 = 𝑇 𝑅 𝐴𝐵,  and hence  by Remark 1 we get that   𝐴𝐵 = 0. 

 

LEMMA 4:  If  𝑡 ∈ 𝑅  and  𝑡2 = 0 , then 𝑡 ∈ 𝐴 ∪ 𝐵 .     

PROOF: Suppose that  𝑡 ∉ 𝐵 , by Lemma 2 , 𝐿 𝑡  𝑇 𝐿 𝑡  = 0 . However, since 𝑡2 = 0 , 𝑡 ∈ 𝐿 𝑡   

and  𝑅𝑡 ⊂ 𝐿 𝑡  , then  𝑡𝑇 𝑅𝑡 = 0 , by  definition of 𝐴 this forces 𝑡 ∈ 𝐴 , hence 𝑡 ∈ 𝐴 ∪ 𝐵 .Since     

𝐴 ≠ 0, 𝐵 ≠ 0 are respectively  left  and  right  ideals  of  the  prime ring   𝑅 ,  𝐶 = 𝐴 ∩ 𝐵 ⊃ 𝐵𝐴 ≠ 0   .    

( 𝐵𝐴 ≠ 0  since if  𝐵𝐴 = 0 , then  𝐵 ∈ 𝑎𝑛𝑛𝑙 𝐴 = 0 , hence  𝐵 = 0 , a contradiction ).  So  𝐶 ≠ 0 . 

Our attention will be concentrated on the nature of  𝐶 . 

If  𝑎 ∈ 𝐶 and  𝑡2 = 0  then, if  𝑡 ∈ 𝐴 , 𝑡𝑎 ∈ 𝐴𝐶 ⊂ 𝐴𝐵 = 0. If 𝑎 ∈ 𝐵 we get  𝑎𝑡 = 0 . In light of Lemma 

(4) we then must have that  𝑎𝑡 = 0  or  𝑡𝑎 = 0 . Consequently  𝑎𝑡𝑎 = 0. 

We claim  𝑎𝑠𝑎 = 0  for all nilpotent elements  𝑠 in 𝑅 . If  𝑠2 = 0  we just saw that  𝑎𝑠𝑎 = 0 . 

Proceeding by induction on the index of nilpotence of 𝑠 we may assume that  𝑎𝑠𝑖𝑎 = 0  for all  𝑖 > 1 . 

Now  

𝑏 =  1 + 𝑠 𝑎(1 + 𝑠)−1 =  1 + 𝑠 𝑎(1 − 𝑠 + 𝑠2  . . . ) 
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Satisfies  𝑏2 = 0 , so by Lemma 4  we have  𝑎𝑏 = 0  or  𝑏𝑎 = 0 , if  𝑎𝑏 = 0  we get that  𝑎𝑠𝑎 = 0 ; 

on the other hand , if  𝑏𝑎 = 0  we get , using  𝑎𝑠𝑖𝑎 = 0   for 𝑖 > 1, that  𝑎𝑠𝑎 = 0 . Hence  𝑎𝑠𝑎 = 0   

for all  nilpotent elements  𝑠 ∈ 𝑅 . 

Now  since  𝑇 𝑥   is  nilpotent  for every  𝑥 ∈ 𝑅, then  𝑎𝑇 𝑥 𝑎 = 0. However  since   𝑎 ∈ 𝑅 ⊂ 𝐴 ,  

𝑎𝑇 𝑅𝑎 = 0 , thus ,  𝑎𝑅𝑇 𝑎 = 0 . Because 𝑅 is prime we have  𝑇 𝑎 = 0 . Hence:  

LEMMA 5:  If  𝑎 ∈ 𝐶 , then  𝑇 𝑎 = 0 . 

   We  continue   with   the   argument   we  were making . Let 𝑎 ∈ 𝐶 , since  𝑇 𝑥  is nilpotent we have   

𝑎𝑇 𝑥 𝑎 = 0 = 𝑎𝑇(𝑥)2𝑎 . Because 𝑎2 ∈ 𝐶2 ⊂ 𝐴𝐵 = 0 , we have that 

 (𝑎𝑇 𝑥 − 𝑇 𝑥 𝑎)2 = 𝑎𝑇 𝑥 𝑎𝑇 𝑥 − 𝑎𝑇(𝑥)2𝑎 − 𝑇 𝑥 𝑎2𝑇 𝑥 − 𝑇 𝑥 𝑎𝑇 𝑥 𝑎 = 0 . 

But then by Lemma 4 , 𝑎𝑇 𝑥 − 𝑇 𝑥 𝑎 ∈ 𝐴 ∪ 𝐵  for all 𝑥 ∈ 𝑅 . Suppose that  𝑎𝑇 𝑥 − 𝑇 𝑥 𝑎 ∈ 𝐴 , 

say; since 𝑎 ∈ 𝐶 ⊂ 𝐴 , 𝑇 𝑥 𝑎 ∈ 𝐴 , hence  𝑎𝑇 𝑥 ∈ 𝐴. If 𝑎𝑇 𝑥 − 𝑇 𝑥 𝑎 ∈ 𝐵 , similarly we get 

𝑇 𝑥 𝑎 ∈ 𝐵. So, for every 𝑥 ∈ 𝑅 either 𝑎𝑇 𝑥 ∈ 𝐴 or 𝑇 𝑥 𝑎 ∈ 𝐵.This implies that 𝑎𝑇 𝑅 ⊂ 𝐴 or 

𝑇 𝑅 𝑎 ⊂ 𝐵 . If  𝑎𝑇 𝑅 ⊂ 𝐴 , then since 𝑎 ∈ 𝐶 ⊂ 𝐵, 𝐵  is a right ideal ; 𝑎𝑇 𝑅 ⊂ 𝐵 , hence  𝑎𝑇 𝑅 ⊂

𝐶 . Similarly , if  𝑇 𝑅 𝑎 ⊂ 𝐵 we get   𝑇 𝑅 𝑎 ⊂ 𝐶 . So , for every 𝑎 ∈ 𝐶 , 𝑎𝑇 𝑅 ⊂ 𝐶 or  𝑇(𝑅)𝑎 ⊂ 𝐶 . 

This implies 𝐶𝑇 𝑅 ⊂ 𝐶 or  𝑇 𝑅 𝐶 ⊂ 𝐶 .  

Suppose that 𝐶𝑇 𝑅 ⊂ 𝐶  , hence  𝐶𝑇 𝑅 𝑇  𝐴   ⊂  𝐶𝑇  𝐴   ⊂ 𝐴𝑇  𝐴  =  0. Now 𝐵𝐴 ⊂ 𝐶 , thus 

𝐵𝐴𝑇 𝑅 𝑇 𝐴 ⊂ 𝐶𝑇 𝑅 𝑇 𝐴 = 0 , because 𝑅 is prime this forces  𝐴𝑇 𝑅 𝑇 𝐴 = 0 . Consider the left 

ideal 𝐴𝑇 𝑅  of 𝑅 , let 𝑥 =  𝑎𝑖𝑇(𝑟𝑖) , 𝑎𝑖 ∈ 𝐴 , 𝑟𝑖 ∈ 𝑅  be any element in  𝐴𝑇 𝑅  . Thus if 𝑣 =  𝑎𝑖𝑟𝑖   , 

then :   

𝑇 𝑣 = 𝑇( 𝑎𝑖𝑟𝑖 ) =   𝑎𝑖𝑇 𝑟𝑖 = 𝑥 . Therefore, 0 = 𝑇(𝑣)𝑛 = 𝑥𝑛  . 

In other words, every element in  𝐴𝑇 𝑅   is nilpotent of degree at most  𝑛 .By Remark 4  𝐴𝑇 𝑅 = 0 . 

Since  𝐴 ≠ 0  by Remark 1  we are forced to 𝑇 𝑅 = 0 , and so 𝑇 = 0 . 

Similarly if we had supposed that  𝑇 𝑅 𝐶 ⊂ 𝐶  we would have been led to  𝑇 𝑅  𝐵 = 0 and so to  

𝑇 = 0. We have therefore proved : 

 

THEOREM 1. If  𝑅  is a prime ring and 𝑇 a centralizer of 𝑅 such that  𝑇 𝑥 𝑛 = 0  for all 𝑥 ∈ 𝑅 , 

where  𝑛 ≥ 1  is a fixed integer , then  𝑇 = 0 . 

 

THEOREM 2. Let  𝑅 be a prime ring , 𝐼 ≠ 0  an ideal of  𝑅 , and 𝑇 a centralizer of  𝑅 such that 

𝑇 𝑥 𝑛 = 0  for all  𝑥 ∈ 𝐼 , where  𝑛 ≥ 1  is a fixed integer , then  𝑇 = 0 .  

 PROOF:  Let   𝐼 ≠ 0  be an ideal of   𝑅 . 

Claim 1 : If    𝑅  is  a prime  ring  then   𝐼  is a prime  subring of  𝑅 . 

Since  every  ideal  is subring  then  𝐼  is subring . Now, let  𝑎, 𝑏 ∈ 𝐼  and  𝑎𝐼𝑏 = 0 , since  𝐼  is ideal  

then  𝑎𝑅𝐼𝑏 ⊂ 𝑎𝐼𝑏 = 0 ,  by the primness of  𝑅 either  𝑎 = 0 or  𝑏 = 0 , hence 𝐼  is a prime ring . 

Case 1: If  𝑇 𝐼 ⊂ 𝐼 , then 𝑇 induces a centralizer  𝑇 of  𝐼 , and since  𝑇 𝑥 𝑛 = 0  for all 𝑥 ∈ 𝐼 , we get 

by claim 1 and Theorem 1 that   𝑇 𝐼 = 0 , and by theorem ( If  𝑇 𝐼 = 0 for some one sided ideal of 

  𝑅 , then 𝑇 𝑅 = 0 ) , hence  𝑇 𝑅 = 0 . 

Case 2: If  𝑇(𝐼) ⊄ 𝐼 , assume  𝑇 ≠ 0 on 𝑅  . 

Claim 2: If   𝑇 ≠ 0  a centralizer of  𝑅  and   𝑎𝑇 𝑥 = 0  (or  𝑇 𝑥 𝑎 = 0)  for  all  𝑥 ∈ 𝐼 ,  then 𝑎 = 0. 

Let  𝑟 ∈ 𝑅 , then 

0 = 𝑎 𝑇 𝑟𝑥 = 𝑎𝑟𝑇 𝑥   , for all   𝑟 ∈ 𝑅  , so  𝑎𝑅𝑇 𝑥 = 0  , since  𝑅 is prime then either  𝑎 = 0  or 

 𝑇 𝑥 = 0  for all  𝑥 ∈ 𝐼, if  𝑇 𝑥 = 0  for all  𝑥 ∈ 𝐼 , then  𝑇 𝐼 = 0,  and so 𝑇 𝑅 = 0 . a 

contradiction . Hence 𝑎 = 0 . 

Now ,  since  𝑇 𝑥 𝑛 = 0  for all   𝑥 ∈ 𝐼 , then  𝑇 𝑥 𝑇 𝑥 𝑛−1 = 0  for all   𝑥 ∈ 𝐼 ,  hence by claim 2 

𝑇 𝑥 𝑛−1 = 0 . Continue in the same way and by  using  claim 2  we  end  up  with  𝑇 𝑥 = 0  for all  

 𝑥 ∈ 𝐼, thus  𝑇 𝐼 = 0 , this leads to   𝑇 𝑅 = 0 , a contradiction . Hence 𝑇 = 0 . 

      Now Theorem 1 can be extended to semiprime rings: 



Majeed & Shalal                        Iraqi Journal of Science, 2014, Vol 55, No.3B, pp:1370-1375 

1375 

THEOREM 3. If  𝑅 is a semiprime ring and  𝑇 a centralizer of  𝑅 such that  𝑇 𝑥 𝑛 = 0  for all 

𝑥 ∈ 𝑅 ,  where  𝑛 ≥ 1  is a fixed  integer , then   𝑇 = 0 .   

PROOF: Since 𝑅 is semiprime  ring , ∩ 𝑃 = 0 , where 𝑃 is a prime ideal of  𝑅 ( see [9] page 115) . 

Claim : 𝑇 𝑃 ⊂ 𝑃  for every prime ideal  𝑃 . 

Let  𝑎 ∈ 𝑃 , 𝑥 ∈ 𝑅 ; 

0 = 𝑇 𝑎𝑥 𝑛 =  𝑇 𝑎 𝑥 𝑛     for  all 𝑥 ∈ 𝑅. Hence the right ideal  𝑇 𝑎 𝑅  is nil of bounded index , then 

𝑅 has a nilpotent ideal which it is cannot since 𝑅 is semiprime , therefore , 𝑇 𝑎 𝑅 = 0 , hence 

 𝑇 𝑎 = 0  for all 𝑎 ∈ 𝑃 , then  𝑇 𝑃 = 0 , so 𝑇 𝑃 ⊂ 𝑃  for all prime ideals 𝑃 of  𝑅 , and so 

𝑇  induces a centralizer 𝑇  on the prime ring 𝑅 = 𝑅 𝑃  , such that  𝑇  𝑥  𝑛 = 0  for all  𝑥 ∈ 𝑅  , by 

Theorem 1 , 𝑇 = 0 . Hence 𝑇  𝑅  = 0 , that is  , 𝑇 𝑅 ⊂ 𝑃  for all prime ideals   𝑃 of 𝑅 .    

Since ∩ 𝑃 = 0, we obtain that   𝑇 𝑅 = 0  , hence  𝑇 = 0 . 
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