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ABSTRACT

This paper is devoted to drive the matrix algebraic equation for the two-
dimensional nonlinear coupled-BBM system which is obtained from using the implicit
finite difference method. The convergence analysis of the solution is proved. Numerical
experiment is presented with initial conditions describing the generation and evolution.
Keywords: Boussinesq system; solitary waves and finite difference method.

1. Introduction.

In recent years, there have been many theoretical and computational methods in
the study of the full water-wave problem. However, there is still need for accurate,
simpler mathematical models. Boussinesq systems of partial differential equations that
approximate the three dimensional Euler equations that describe the irrotational, free
surface flow of an incompressible, inviscid fluid. Because of their simplicity,
Boussinesq systems have been used in the study of a varity of water wave phenomena in
ports, channels, coastal areas, and in the open sea. They have also been used in studies
of tsunami wave generation and propagation [16]. These systems may be written as
follows:

v, +Vu+V(vu)+aAVu - bAv, =0

1 ()
u, +VV+§V|M|2 +cAVy — dAu, =0. (

These systems have been derived by[9] as approximations to the three-
dimensional Euler equations and describe irrotational free surface flow of an ideal fluid
over a horizontal bottom. The independent variable X = (x, y)represents the position, t
is proportional to elapsed time, v =v(X,?)is proportional to the deviation of the free
surface from its rest position, while u is proportional to the horizontal velocity of the
fluid at some height. We would also like to mention that the initial-boundary value
problem for the analogous BBM-BBM system in one space dimension with
nonhomogeneous Dirichlet boundary conditions at the endpoints of a finite interval
were shown to be locally well-posed by Bona and Chen, [7]. Initial-boundary-value
problems (ibvp’s) for (1) on a finite interval in one space variable were analyzed in [6].
In [3] we proved the convergence analysis of the solution of one-dimensional nonlinear
Coupled-BBM system by using implicit finite difference method. In [17] the authors
proved optimal-order L2-error estimates for the standared Galerkin semidiscretization
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of the BBM-BBM system with homogeneous boundary conditions on a smooth domain
with a general triangulation. Three ibvp’s for the BBM-BBM system on a smooth plane
domain, corresponding to homogeneous Dirichlet boundary conditions, homogeneous
Neumann boundary conditions and to the (normal) reflective boundary conditions
analyzed in [18]. Solution for one dimensional Benjamin-Bona-Mahony-Burgers
equation using Crank-Nicolson Finite Difference method introduced in [10 ], while
Huang in [15 ] solved Coupled BBM- system in one dimension by using homotopy
analysis method. Existence of the solitary waves for these, one-dimensional system has
been studied by Toland [5]. The wellposedness and regularity of (1) are established in
[7 ] and [ 8]. The existence of line solitary waves, line cnoidal waves, symmetric and a
symmetric periodic wave patterns are proved in [4, 11, 12 Jand [13].
In this paper, we will study the Boussinesq system of the type BBM-BBM

correspondsto a=c=0,b=d = 16’ 1.e
v, +Vu +V(vu)—%Av, =0 ...(2)a

1 1
u, +vV+5v|u|2 — A, =0 ..(2)b

where v,u are mappings from Qx(0,0) to R, Q=(0,L)x(0,L) with boundary

conditions: v| o = 0,u|  =0,¢ €[0,0)and the initial conditions are

oQ

Vo = Voot _, =y, X €Q.[14]

t=0

1=
2. Derivation of the Matrix Equation Using the Finite Difference Method.

Divide the interval (0,L) in the x direction into n subintervals(x, ,x, ) of the
. 1 . . .
uniform length —, k =1,...,n, 0 = x {(x,{..{x,_,(x, = L, and divide the interval (0,L) in
n
the y direction into the same number of subintervals (y,_,, y, ) of the uniform length

1
;,k =1,..,n,0=y,(» (v, (y,=L.

The discredited solution of the equation (2a) and multiply equation by k, we get
the following equation

) - k - - k - -
(V](xk’ys)_vj ](xk’ys))_‘_%(u] ](xk+]’ys)_u] ](xkfl’ys))_‘_i(u] ](xk’ys+])_u] ]('xk’ysfl))_‘_

o (x,,9.) : ku’ (x,,y,), ; :
#(u]('xkﬂ’ys)_uj(xkfl’ys))+#(v](xk+]’ys)_Vj(xkfl’ys))+
2h 2h
kv](x 7ys) j j kuj(x ’ys) j j
2 (0, ) U (X, V) A (0 (0, Y 0) =V (0, 000)
2h 2h
1 . . - - -
_6h2 (V' (X5 Y) =207 (3, ) + v (%, p) =V ]('xk+1’ys)+zvj ](xk,ys)—v’ ](xk—l’ys))
1 . . . - . .7
6h? O (X Vi) =2V (s ) 0 (6,1, =V 7 (0, 2,00 #2077 () = v (6, 9,4)) = 0,
k,s=1,...,n—1.

After arranging the above equation in terms of

v (x, v )V (X100 (X, p0)v (X, ,) and v (x,,p,,,) , we get
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G, (! (xp, y IV (x5 v) + Gy (x, yOW (x5 9,) + Gy (x, yOIWV (3, 9,) +
G, (uj (x> D, ))Vj (x4, ¥+ Gy (uj (Xe5 ¥y ))Vj (Xp>Ysn) = H(u s (X45 ¥4 )an_l (X5 ¥5))s 3)
where

G, (x,¥,))= (1+%(“j(xk+1ays)_“j(xk—1’ys)+“j(xk’y3+1)_“j(xk’ys_1 ))"‘é)’
G, (' (x,3,)) = (_iuj(xk’ys)_%)’
2h 6h
Gt (5 3,)) = (ot (3,3~ —),
* 2h 6k’
and

g g g k o .
H(u’ l(xkays)a"j l(xkays))z"j l(xkays)_ﬁ(uj l(xlmays)_”j l(xk—lﬂys))

k o g o 2
——(u’ l(xkay.s+1)_”j l(xk’ys—l))_ v’ l(xk+1ay.s~)+3h_2"j l(xkays)

2h 6h°

- 1 g i
v’ l(xkflays)__vj l(xkay.g+1)_ v’ l(xkaysfl)'

6k 6h> 6h>
Equation (3) becomes the following matrix equation

G(uj,vj){vj}: {H(uj"],vj"])},

where Gis (n—1)>x(n—1)"matrix and can be represented by the matrix of

(n—1)x(n—1) submatrices g, (u’,v’') for l,s=12,.,n—1, that is

gl,](ujavj) gl,n—](ujavj)

g2,](uj’vj) g2,n—](u]avj)
82,1 vy - En-2n-1 ', v')
_g"‘]’] (u]’vj) gn—],n—] (u]avj)_

The main diagonal entries g,,,/ =1,...,n —1and other diagonal entries
g111-&1s> 1 =2,...,n—1 are the only nonzero elements. we denote the nonzero

elements of g,,,g,,; and g,,;by (&) = & W (Xy0)52,0)))5i = 1,2.3.
Then the g,,(u’,v’), 1 =1,...,n—1 is the following tri-diagonal matrix:

(g]j )(l—])n—(l—Z),] &3 0 0 0
&> (gf )(l—])n—(l—3),2 &3 0 0
0 0 8> (g]j)l(n—])—],n—Z 83

0 0 0 &, (gf )l(n—]),n—] |

The two other diagonal elementsg,, |,g,,,/=2,..,n—1 are the following diagonal

matrices respectively:
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(g{ ) —— 0 0 0 0
0 (g3 )(l—])n—(/—3),2 0 0 0
0 0 0 (gé )l(n—])—],n—Z 0
L 0 0 0 0 (g3 )l(n—]),n—] |
and
(g:{ )(l—2)n—(l—3),] 0 0 0 0
0 (&3 )22 O 0 0
0 0 0 (g:{ )(/—])(n—])—],n—Z 0
0 0 0 0 (g3 )(/—])(n—]),n—] |

The {vj }is a (n—1)> x1vector and it is also considered as (n—1)x1vector of (n-1)

subvector {vl’ },i =1,...,n—1. That is

v = b

where

{Vij } = {Vj (x5 )a---avj (%75 Voo )}T .
Similarly

{H@ v =} 1
where

. . . T
{Hi] }: {H] (xi’y])""’H] (xi’yn—])} .
By the same approach for the equation(2b), we get
Py’ (xp, yo)u’ (x5 y) + By (g, y u? (X, v) + B’ (x, vy )’ (x,, v,) +
Py (u’ (s y Du? (v, v, )+ B! (s, y ! (xy, p,00) = O’ (x5 p, ) v/ (x5 2,))s -(4)
Where,

| ko < < ‘ 2

Pi(u (o ) = (b () = (o) e (i) = (o ye D)+ 50 5)
4 1

Pz(uj(xk’ys)) = _6h2 >

and

- - - k. .
Ou’ l(xkays)avj l(xkays))zuj l(xkays)_ﬂ(vj l(xk+1ays)_vj l(xk—lﬂys))

k. ~ i 2
—2—h(Vj l(xk:y.s'+l)_vj l(xk:ys—l))_ 6h2 u’ l(xk+1:ys)+Wuj l(xk:ys)

ujil (xkflays)_ ujil (xkay.g+1)_ uj—l(xk’ykl)'

6k 6h’ 6h’
Equation (4) becomes the following matrix equation

P(l/lj,Vj){uj }: {Q(uj—l ! }’

Where, P(u’,v’)is (n—1)*> x(n—1)*matrix and can be represented by the matrix of

(n—1)x(n—1) submatrices p, (u’,v’') for I,s=12,.,n—1, that is
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P (“javj)
P (' ,v")

P (ujavj)
L Pn-1 ' ,v')

P (“j ) Vj)
P2 (u’,v")

pn—2,n—] (uj b Vj)
pn—],n—] (1/[] b V] )_

The main diagonal entries p,,(u’v’),l =1,...,n — 1 and other diagonal entries

P’ v, p,w’ ,v'), [ =2,..,n—1are the only nonzero elements. We denote

pi(u’ Xy ys(z))’vj (Xx(1y» Vsy)) the nonzero elements of p,, (u’,v/ ) Pio (’,v') or

P W vy (p))iayswy»i =12 Then, the p,,(u’,v'),1=1,..,n—1 is the following

tri-diagonal matrix:

(p]j)(l—])n—(l—Z),] P> 0 0 0
P> (p]])(l—])n—(l—S),Z P> 0 0
0 0 b, (p]j)l(n—])—],n—Z b,
i 0 0 0 b, (plj)l(n—]),n—]_

The two other diagonal elements p,,_, (u’,v’), p,_,(u’ ,v’), 1 =2,...,n—1 are the
following diagonal matrices :
(p, 0 0 0 0]
0O p, 0 0 O
0 0 0 p, O
10 0 0 0 p,]
Where, {uj }, {H(uj“ v )} are (n—1)* x1vector.

We now prove the existence of the solutions of the matrices equations which we

obtained from equation (3) and equation (4) respectively.
Theorem 2.1. The solutions of the matrices equations

() G’ v }= {H@ " v

and
i) P’ v’ = 0@’ v/}
exist.
Proof (1): let j € N be fixed, consider the following iteration

G(u/, ){vij } = {H (" v/ )}, where u] =u’"'. By subtracting the last equation
from G/ )/, }={H@ " v/}, we get
G/, |-G/ )/ }=0, then
G(u! vl =/ )= (Gl ) - Gl v/}
For the first row in the right hand side of last equation
(G, ey (o, p ) =Gy, (xy, y DV ey, 9) +(Gy (L CGry, 90)) = Gy (u, (x, y )WV (3, 0,)
+ (G (e, (3, 1)) = Gy (u, (e y DIV (3, 7).

..(3)
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By mean value theorem, the first row elements become

57y = i[[Gl (e (e YO v (e 30 HGs @l (xy, )] v (3, 92) ©)

+[Gs (e (6, y ) V! (e YOI (e 1)) = (@ (3, 1),

where the value of u}.(x,,y,)is between u/ (x,,y,)and u/(x,,y,), and
(Gl. (ul(x,, )))xl ,i =1,3represents the partial derivatives of (Gl. (ul(x,, ))) with
respect to u’(x,,,).
Now for the first element
8 =Gyl (x, v v/ G y)IG (e (e, yO)] v (xy, 9,) +
+[Gs (g (e, YD1 v/ (g, 01 Gy 1)) = (@, (x5 1)

= (0+%Vij(x1’y2)+%Vij(xz’yl))(ui—l(xlayl))_(ui(xl’yl))a

51{2 =[G, (ui{‘('xl’yl Nlia Vij (x1, y)IG; (ui{‘('xl’yl Nlia Vij (x1,3,) +
+[G; (“i{f(xla)ﬁ Nl Vij (0 YOI, (x5, 30) = (u, (x5 ,))

ko
= (E v/ (L, v (xy, 1) = (u, (xy, ).
For the second row, we have

54, = SIG, Wk (x 3 )]y v) (5130 HG @l (3, 7 D] v, (510 )

1=1
+[G; (uzj* (X Y2 ] Vij (x,¥3)+ Gy (uzj* (X Y2 ] Vij (x5, Y )@, (x5 2,)) = Gy (u,(x,, 3,))s
[=12,.,n—1.
the first element in the second row, becomes
52/,1 =[G, (uli CASS)IN Vi/ (x, ) +1G, (uli CASTS)I N Vi/ (x1,,)
+[Gy (ui (X, y D] v (x5 v3) + Gy (i Gy, v, D1 v (g, v )1 (30, 9,)) = G (u, (%, ,)
= (o ) 0 () ) (a3 (355 720) = G 2
5('/;,_1)2_1,(,,_1)2 =[G, (uzl* (X1 Vs ))]x,,,z Vi/ (*,2,Y,.1) +[G, (uzl* (CT ))]XH Vi/ (%, 15 Y02)

+[G, (x5, ))]x,,,z v (2, N (3, v, 0)) = G (x, 45 0,0)

SO0+ (1, DM (53, )= 5,103,
and
87 1+ o =G @13y s (o 9 2) H G (el (o 7y W ¥ (i )
+[Gy (i (x, 5 Y, D, V] Gy, DG (i (x, 0y, D], v (X, )1
1,15y 1oy ) — (1,5 123 )

ko k. ko
= (E vi] ('xan s yan) + E vi] ('xnf] s ynfS) + E vi] ('xnf] s ynf] ))(uifl ('xnf] s yan )) - (ui (xnf] s yan ))

Therefore, the right hand side of equation (5) becomes
RO/ ul ! =l )
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where R(v/,ul,)is the following matrix
R 0 0 0
J J J
iy o 753 0 0
J J J
r(n—])z—],(n—])z—Z r(n—])z—],(n—])z -1 r(n—])z—],(n—])z
0 0

J
r(n—])z,(n—])z—] r(n—])z (n-)? |

Since, k and h are both small and v’ is bounded [1], then the nonzero elements are
sufficiently small.
Since,

iy =G, @) Cep, yO)av! G yOIGs (uh (e, pO)La v/ (x, p,) +
+[G5 () Gy v Gy, v Gy 30) = (1, (6,5 31)

k k
=0+Ev{(x],y2)+2—hvi’(x2,yl)

koo .
< )+ Gy <er,
=[G, (ui{‘('xl’yl ))]xZVij (x1, y)IG, (ui]’;('xl’yl ))]xZVij(x]’yZ)+

+[G; (ui]’;('xl’yl Nl Vij(x2’y] N, (x,30)) = (x5, 3))

:%V (x],yl)— ‘ (x]’y])‘ €25

and
= [[Gz(”ii(xn_pyn_l ))]x ZV, (xn 27yn_1)+[G2(”,{ﬁ(xn_17yn_1 ))]x LV (xn 1,)/,,_2)

+[Gy @ (x5 9, D,V (s Y, (3,05 ,00) = Gy (X, 9,0)

J
r(n—l)z—l,(n—l)z

k k
zﬁv(nl7ynl)<_ (xnl’ynl)| _63

By the same way, we conclude that the elements of matrix R are small. Thus, the norm
of the matrix R, which is defined by sup”R(V

xeR"”
Now, it remains to show that G is invertible and bounded away from zero.
The matrix G is positive definite and bounded away from zero, since we can choose k
and h, to such that the diagonal of the matrix is positive [2]. This completes the proof of
part (1).
Proof (ii)' as in part (1), consider the following iteration
Pl = §= (Pl = P! fu? ) ()
By the same argument as in (i), the right hand side of equation(7), becomes
W !, ~ul ).
Where, the matrix W (v/,u},)is the following:

1s small and bounded.
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0w, 0 0 0
Wg,] 0 W2j,3 0 0
J J
0 W(n—])z—],(n—])z -2 0 W(n—])z—],(n—])z
J
L 0 0 W(n—])z,(n—])z -1 0 |

Since, k and h are both small and u’ is bounded [1], then the nonzero elements are
sufficiently small. Since,

W]];] =[p, (ui{‘(x] » Vi ))]xluij(xl V) +p, (ui{k('xl’yl ))]xluzj (X1, 3,) +

+[p, (uzj* (x5 Y )] “1] (X0, YOIy (x5, 1)) = (x5, ,))
0,

le;z =[p, (ul(x,,, ))]xz u! (x, 3) +[py (i (x,, 3, ))]xz ul (x,,,)+
+ [, (G yO)] uf (g, )y (3, ) = (u, (x5 0,)

.
:2_huij(x1’y2)

k )

< —\u’ <

- 2]’[ ‘uz (x] ’yZ)‘ —64 b

and

W(j,,,l)Zq(,,,l)Z,l =[P, (i (x, 1,5, ))]xn,z ul (x, 5, ,5) + [P Wi(x,1, ¥, ))]xn,z ul (x, 1,9,3)
J

+[p, (uzj* (X, 15V ))]XH Vij (x> Y,2)]+[p, (”zj* (E, ))]xH v/ (X, Y, )]
(x5 Y,0)) = (x,4,,,))

k.
ZE%’ (X, 15Y02)

< i u’
2n"

Also, the other elements are sufficiently small. Thus, the norm of the matrix W, which

is defined by sup|w v/, u/)
xeR"!

Now, it remains to show that P is invertible and bounded away from zero.

The matrix P is positive definite and bounded away from zero, since we can choose k

and h, to such that the diagonal of the matrix is positive [ 2]. This completes the proof of
part (i1).
3. Numerical Experiments

(X, 15V )‘ <€;5.

1s small and bounded.

In this section, we solved numerically the BBM-BBM system by using the
implicit finite difference method with homogeneous Dirichlet boundary conditions in
[12]. If we consider the initial-value problem for(2) with a given general initial profile
(v,(x,y),u,(x,y))with homogenous Dirichlet boundary condition , and apply the

scheme in section (2) we solve a system in each step . The termination criterion for the

inner iteration was: max‘uj.k”) —u'”|<.01 and max‘vj.k”) —vj.")‘ <.01,

k =0,12,..andj € N is the time step ,
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We present the results of numerical experiments that we performed in the case of the
BBM-BBM system of two dimension, with homogenous Dirchlet boundary conditions.
In many real physical situations, the wave is generated by a source which is not
necessarily axisymmetric, for example in the 2004 Asian tsunami the waves were
generated by a fault line which is about 1200km length in a north-south orientation. It is
observed that the greatest strength of the tsunami waves was in an east-west direction
[14], and the initial data in this sequence of tests be based on

2 @ (0" (x—xp 2" 0 (y—16)2™)

v(x,y,0)=5a"e ,
u(x,y,0)=0,
Where, a =0.1,m=8,0 =10, [ 14].

The simulations are executed up to time t=10. ¥ and v values at y=15, t=8 with
different values of x presented in table 1. In figure 1, the initial wave profile of vand its
surface plot are presented to give a view on the rectangular nature of the initial data.
Similar plots are presented with different time in figure 2. The results show that the
waves have the same behavior with the results in [ 14], where the leading wave in the
positive and negative x-directions (east-west directions) is much bigger than that in the
north-south directions. The waves in the north-south directions are very small. Also, as
in [ 14], the maximum amplitude is 0.05 at t=0, and its decrease when time increases.

001k
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Figure 2. Solution describes the evolution of vin the system(2) for different time.

Table 1: u and v values at y =15 ,t=8.

X u 1%

0 0 0

1 0 0

2 -3.8E-07 1.37E-06
3 -6.7E-06 2.06E-06
4 -1.03E-05 3.08E-05
5 -1.27E-04 4.73E-05
6 -1.95E-04 4.705E-04
7 -0.0015 7.157E-04
8 -0.0023 0.0043
9 -0.01 0.0063
10 -0.0142 0.0192
11 -0.0279 0.0256
12 -0.0334 0.0292
13 -0.0221 0.0297
14 -0.0161 0.0194
15 -0.0226 0.0126
16 -0.0191 0.01
17 2.077E-08 -1.01E-04
18 0.0191 0.01
19 0.0226 0.0126
20 0.0161 0.0194
21 0.0221 0.0297
22 0.0334 0.0292
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23 0.0279 0.0256
24 0.0142 0.0192
25 0.01 0.0063
26 0.0023 0.0043
27 0.0015 7.157E-04
28 1.94E-04 4.692E-04
29 1.34E-04 4.945E-05
30 0 0

4. Conclusion

The basic idea in this paper was to prove that the use of implicit finite difference
method in solving two dimensional Coupled BBM system possible and, indeed, been
proposed theory in this regard, due to the use of this method had emerged from a system
of nonlinear algebraic equations and found the practical part of this paper that the
method of the fixed point iteration is to give acceptable results and can be easily used in
solving nonlinear system for this type of systems
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