On n-Weakly Regular Rings

Raida D. Mahammod

cs Mohammed Th. Al-Neimi
College of Engineering
University of Mosul

College of Computer Sciences and Mathematics University of Mosul

Accepted on: 29/06/2010

Received on: 09/05/2010

الملخص

كتعميم للحلقات المنتظمة بضعف، نُعرّف الحلقات المنتظمة بضعف من السنمط n على إنها لكل $a \in N(R)$ فأن $a \in RaR$ وتسمى هذه الحلقة حلقة منتظمة بضعف من النمط a. في هذا البحث أعطينا خواص منتوعة للحلقات المنتظمة بضعف من النمط n وكذلك درسنا العلاقة بين تلك الحلقات والحلقات المختزلة بغض أنواع الحلقات ومنها الحلقات من النمط NCI و SNF و SNF.

ABSTRACT

As a generalization of right weakly regular rings, we introduce the notion of right n-weakly regular rings, i.e. for all $a \in N(R)$, $a \in aRaR$. In this paper, first give various properties of right n-weakly regular rings. Also, we study the relation between such rings and reduced rings by adding some types of rings, such as NCI, MC2 and SNF rings.

Introduction:

Throughout this paper a ring R denotes an associative ring with identity and all modules are unitary. For a subset X of R, the left(right) annihilator of X in R is denoted by r(X)(l(X)). If $X=\{a\}$, we usually abbreviate it to r(a)(l(a)). We write J(R), and N(R), for the Jacobson radical and the set of nilpotent elements respectively.

The center of the ring R is denoted by Cent(R) and it is $Cent(R) = \{a \in R \mid ar = ra \quad \forall \quad r \in R\}$. A ring R is called n-regular if for all $a \in N(R)$, $a \in aRa$ [7]. A right R-module M is called N flat if for any $a \in N(R)$, the mapping $1_M \otimes i: M \otimes_R Ra \to M \otimes_R R$ is monic, where $i: Ra \to R$ is the inclusion mapping [8]. A ring R is called right (left) SNF if every simple right(left) R-module is N flat [8].

A ring R is called *semiprime* if it has no nilpotent ideals [6]. A ring R is called *reduced* if N(R) = 0 [6], or equivalently, $a^2 = 0$ implies a = 0 in R for all $a \in R$. Recall that a ring R is MERT(resp. MELT), if every maximal essential right (resp. left) ideal of R is an ideal [9].

2. n - Weakly Regular Ring

This section is devoted to give the definition of n-weakly regular rings with some of its characterizations and basic properties.

A ring R is right (left) weakly regular [6], if $a \in aRaR$ (RaRa) for every $a \in R$. We called R is weakly regular if it is both right and left weakly regular.

Definition 2.1

A ring R is to be *right* (left) *n-weakly regular* if $a \in aRaR$ ($a \in RaRa$) for all $a \in N(R)$. We say that R is n-weakly regular if it is right and left n-weakly regular ring.

Clearly every weakly regular rings are *n-weakly regular*.

Examples:

- 1- Every reduced ring is n-weakly regular.
- 2- Every n-regular ring is n-weakly regular ring.
- 3- The ring Z_6 of integers modulo 6, is reduced, n-regular, weakly regular ring, so it is n- weakly regular.

$$\text{4- Let } R = \left\{ \begin{bmatrix} Z_2 & Z_2 \\ Z_2 & Z_2 \end{bmatrix} \right\}, N(R) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & , \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} & , \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} & , \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}. \quad R \quad is \quad \text{n-}$$

regular, weakly regular ring, so it is n- weakly regular but R not reduced ring.

5- The ring Z of integer number is reduced, n-regular, so it is n- weakly regular but Z is not weakly regular ring.

Proposition 2.2

R is a right n-weakly regular ring if and only if aR is idempotent right ideal for all $a \in N(R)$.

Proof:

Let R is a right n-weakly regular ring and I is a principal right ideal of R generated by a nilpotent element, then there exists $a \in N(R)$ such that I=aR, clearly $I^2 \subset I$.

On the other hand, since R is right n-weakly, then there exists $y,z \in R$ such that a=ayaz. Now let $x \in I$, then there exists $r \in R$ such that $x=ar=ayazr \in I^2$. Therefore $I \subset I^2$. Hence $I^2 = I$.

Conversly, Let $a \in N(R)$, since aR is idempotent right ideal of R, so $a \in aR = aRaR$. Therefore R is right n-weakly regular ring.

Proposition 2.3

Let R be a right n-weakly regular ring. If $aR \subseteq I$, for $a \in N(R)$ and I is right or left ideal. Then aRI=aR.

Proof:

It is clearly that $bRI \subseteq bR$ for any $b \in R$. Now let $a \in N(R)$ and $x \in aR$, then there exists $r \in R$ such that x=ar. Since R is right n-weakly regular ring then there exists $y,z \in R$ such that a=ayaz, x=ayaz, hence $azr \in aR \subseteq I$. So $aR \subseteq aRI$. Therefore aRI=aR.

Corollary 2.4

Let R be a ring for all $a \in N(R)$ and any I right or left ideal of R such that $aR \subseteq I$. Then the following condition are equivalent:

- 1- R is right n-weakly regular.
- 2- For all $a \in N(R)$, aRI=aR.

Proof:

 $1 \rightarrow 2$ by Proposition 2.3.

 $2 \rightarrow 1$ Let I=aR and by Proposition 2.2.

Proposition 2.5

Let R be a right n-weakly regular ring. Then $N(R) \cap Cent(R) = 0$

Proof:

If $N(R) \cap Cent(R) \neq 0$, then there exists $0 \neq a \in N(R) \cap Cent(R)$ such that $a^2=0$. since R is right n-weakly regular then there exists $y,z \in R$ such that $a=ayaz=a^2yz=0yz=0$ ($a \in Cent(R)$). Therefore a=0. This is shows that $N(R) \cap Cent(R)=0$.

Corollary 2.6

Let R be a commutative ring. Then R is reduced if and only if R is right n-weakly regular.

Lemma 2.7 [2]

- 1- Every one sided or two sided nil ideal of R is contained in J(R).
- 2- In any ring R, $a \in J(R)$ if and only if 1-ar is invertible for all $r \in R$. Now we have the following proposition

Theorem 2.8

Let R be a right n-weakly regular ring. Then $N(R) \cap J(R)=0$.

Proof:

If $a \in N(R) \cap J(R)$, then there exists $y,z \in R$ such that a = ayaz. Hence a(1-yaz)=0, since $a \in J$, $yaz \in J$, then by Lemma 2.7(2), there exists invertible element $v \in R$ such that (1-yaz)v=1. So (a-ayaz)v=a, yield a=0. Therefore $N(R) \cap J(R)=0$.

Let R be a ring we denoted to the upper nil radical for a ring R by $Nil^*(R)$ and it is the sum of nil ideal in the ring R.

Corollary 2.9

Let R be a right n-weakly regular ring . Then $Nil^*(R)=0$.

Proof:

Let I be a left or right or two sided nil ideal, by Lemma 2.7(1), we have that $I \subseteq J(R)$, $I \subseteq N(R) \cap J(R)=0$, Theorem 2.8, I=0, which is a contradiction. So R not contain any nil ideal. Therefore $N^*(R)=0$.

Corollary 2.10

Let R be a right n-weakly regular ring. Then R is semiprime ring.

Proof:

Let I be a nilpotent right ideal then $I \subseteq N(R) \cap J(R)=0$ (Theorem 2.8) I=0. Therefore R is semiprime ring.

3. The Connection between n-Weakly Regular Rings and Other Rings.

In this section we gives the connection between n-weakly regular rings and reduced rings, SNF rings.

Proposition 3.1

The following conditions are equivalent for a ring R.

- 1- R is reduced.
- 2- R is right n-weakly regular and N(R) forms a right ideal of R.
- 3- R is right n-weakly regular and N(R) forms a left ideal of R.
- 4- R is right n-weakly regular and NI ring.
- 5- R is right n-weakly regular and $N(R) \subseteq J(R)$.

Proof:

$$1 \rightarrow 4 \rightarrow 3 \rightarrow 5$$
, $1 \rightarrow 2 \rightarrow 5$ it is trivial.

Suppose that R is right n-weakly regular ring. So $N(R) \cap J(R)=0$, (Theorem 2.8). Since $N(R) \subseteq J(R)$, then $N(R) \cap J(R)=N(R)=0$. Therefore R is reduced.

Theorem 3.2

Let R be a ring with aR=Ra, for all $a \in N(R)$. Then the following conditions are equivalent:

- 1- R is right n-weakly regular.
- 2- R is n-regular.
- 3- R is reduced.

Proof:

 $1\rightarrow 2$

Let $0 \neq a \in R$, such that $a^2=0$. Since R is a right n-weakly regular, then $a \in aR=aRaR$ (Proposition 2.1)

```
= aRRa (Ra=aR)
```

=aRa.

so $a \in aRa$, hence R is n-regular.

 $2 \rightarrow 3$

Let $0 \neq a \in R$, such that $a^2 = 0$. Since R is a right n-regular, then there exists $b \in R$ such that a = aba since aR = Ra there exists $x \in R$ such that ab = xa, so $a = aba = xa^2 = x0 = 0$. Therefore R is reduced.

$3 \rightarrow 1$ It is trivial.

A ring R is called NCI provided that N(R) contains a non zero ideal of R whenever $N(R) \neq 0$ [1].

Lemma 3.3 [1]

Let R be a ring with $N(R) \neq 0$. Then R is NCI if and only if $N^*(R) \neq 0$.

Proportion 3.4

Let R be a NCI ring, then R is right n-weakly regular if and only if R is reduced.

Proof:

Let $N(R) \neq 0$, sinc R is NCI ring from Lemma 3.3, we get that $N^*(R) \neq 0$ but R is right n-weakly regular, $N^*(R)=0$ (Corollary 2.9), which is contradiction. So N(R)=0. Therefore R is reduced.

A ring R is called weakly reversible if and only if for all $a,b,r \in R$ such that ab=0, Rbra is a nil left ideal of R (equivalently braR is nil right ideal of R). Clearly ZI ring is weakly reversible [4].

Proposition 3.5

A ring R be right n-weakly regular ring and weakly reversible if and only if R is reduced

Proof:

Let $a \in R$ with $a^2=0$. Then a=ayaz for some $y,z \in R$ because R is right meakly regular ring. Since R is weakly reversible then ayaR is nil right ideal of R so $ayaR \subseteq J(R) \cap N(R) = 0$ (Lemma 2.7(1) & Theorem 2.8) we get ayaR=0, in particular a=ayaz=0. Therefore R is reduced.

Converse, it is trivial. ■

Recall that a ring R is right MC2 if $K \cong eR$ is simple, $e^2 = e$, then K = gR for some $g^2 = g$ [5].

Lemma 3.6 [9]

Let R be a left MC2,right SNF ring and MELT ring. Then R is a semiprime ring and right non singular.

Theorem 3.7 [9]

Let I be a right ideal of a ring R. Then R/I is N flat if and only if Ia=I \cap Ma for all a \in N(R).

Theorem 3.8

Let R be right SNF, left MC2 and MELT ring. Then R is left n-weakly regular ring.

Proof:

From Lemma 3.6, we get that R is a semiprime ring and $a \in N(R)$. If RaR+l(a) $\neq R$, then there exists a maximal left ideal M of R containing RaR+l(a), if M is not essential then we can write M=l(e), where $e^2 = e \in R$ and $e \neq 0$, since RaRe=0 because RaR \subseteq M, (ReRa)²=0 implies ReRa=0 (since R is semiprime) ReRa=0 in particular ea=0 and $e \in l(a) \subseteq M=l(e)$, then $e^2 = 0$, which is a contradiction. Therefore M is an essential, since R is MELT ring, then M is a two sided ideal then there exists a maximal right ideal L in R containing M, since R is right SNF ring then R/L is N flat right R-module, a=ma for some $m \in M$ (Theorem 3.7), (1-m)a=0, $1-m \in l(a) \subseteq M \subseteq L$ therefore $1-m \in L$ implies $1 \in L$ which is a contradiction, therefore RaR+l(a) =R for all $a \in N(R)$. Thus R is left n-weakly regular ring.

Theorem 3.9

Let R be MELT and right SNF ring with RaR is essential for all $a \in N(R)$, Then R is left n-weakly regular ring.

Proof:

Let $a \in N(R)$. If RaR+l(a) $\neq R$ then there exists a maximal left ideal M of R containing RaR+l(a), since RaR is left annihilator of a nilpotent element by the hypothesis RaR is essential left ideal in R, M is an essential ideal of R (MELT ring), there exists a maximal right ideal L in R such that $M \subseteq L$. Since R is right SNF ring, then R/L is N flat right R-module, a=ma for some $m \in M$ (Theorem 3.7), $1-m \in l(a) \subseteq M \subseteq L$ implies $1 \in L$, which is a contradiction. Therefore RaR+l(a) =R for all $a \in N(R)$, and so R is left n-weakly regular ring.

Definition 3.10 [8]

A right *R*-module *M* is said to be *nil*-injective, if for any $a \in N(R)$, any right *R*-homomorphism $f:aR \to M$ can be extended to $R \to M$, or equivalently f=m., where $m \in M$.

The ring R is called right nil-injective if R_R is right nil-injective. Clearly a reduced ring is a right nil-injective and n-regular ring is a right nil-injective [8].

Theorem 3.11

Let R be a semiprime ring whose simple singular right R-module are nilinjective. Then R is right n-weakly regular ring.

Proof:

Let $a \in N(R)$. We claim that RaR+r(a)=R if not, there exists a maximal right ideal M of R containing RaR+r(a). If M is not essential in R then M=r(e), $e^2=e \in R$. Since $Rae \subseteq RaR \subseteq M=r(e)$, eRae=0, $(aeR)^2=0$ but R is semiprime, aeR=0, so ae=0. Thus $e \in r(a) \subseteq M=r(e)$, which is a contradiction. Hence M is essential right ideal in R and so R/M is nil-injective. Define a mapping $f: aR \to R/M$ such that f(ar)=r+M, let $x,y \in R$ such that ax=ay, a(x-y)=0, (x-y)+M=f(a(x-y))=f(0)=M, then $x-y \in M$, x+M=y+M,

f(ax)=x+M=y+M=f(ay), f is well define. 1+M=f(a)=(b+M)(a+M)=ba+M, $1-ba \in M$, since $ba \in RaR \subseteq M$ then $1 \in M$ which is a contradiction, so RaR+r(a)=R, in particular there is $y,z \in R$ and $v \in r(a)$ such that yaz+v=1, ayaz+av=a, a=ayaz. Therefore R is right n-weakly regular ring.

Proposition 3.12

Let R be a ring whose simple right R-module are nil-injective. Then R is right n-weakly regular ring.

Proof:

Assume that $a \in R$ such that aRa=0. Then $RaR \subseteq r(a)$. If $a \ne 0$ then there exists a maximal right ideal M containing r(a). By hypothesis R/M is nil-injective. We define a mapping $f: aR \to R/M$ such that f(ar)=r+M, f is well define similar to Theorem 3.11, so there exists $b \in R$ such that 1+M=f(a)=ba+M, $1-ba \in M$ because $ba \in RaR \subseteq M$ then $1 \in M$ which is a contradiction, so a=0. Therefore R is a semiprime ring, by Theorem 3.11 we get that R is right n-weakly regular ring.

REFERENCES

- [1] Hwang, S. U., Jeon, Y. Ch. and Park, K. S. (2007); "On NCI rings", Bull. Korean Math. Soc., Vol. 44, No. 2, pp. 215-223.
- [2] Kasch, F. (1982) "Modules and Rings" Academic Press Inc. (Londeon) Ltd.
- [3] Kim, N. K., Nam, S. B. and Kim, J. K. (1999); "On simple singular GP-injective modules" Comm. In Algebra, Vol. 27, No.5., pp. 2087-2096.
- [4] Liang, Z. and Gang, Y. (2007); "On weakly reversible rings" Acta Math. Univ. Comentanae, Vol. LXXVI, No. 2, pp. 189-192.
- [5] Nicholson, W.K. and Yousif, M. F. (1997) "Mininjective ring" Journal of algebra, Vol. 187, pp. 548 -578.
- [6] Ramamurthi, V. S. (1973) "Weakly regular ring" Canda. Math . Bull., Vol. 16, No. 3, pp.
- [7] Stenström, B. (1977); "Ring of Quotient" Springer-Verlag, Berlin Heidelberg, New York.
- [8] Wei, J. and Chen, J. (2007); "Nil-injective rings", International Electronic Journal of Algebra, Vol. 2, No., pp. 1-21.
- [9] Wei, J. and Chen, J. (2008); "NPP rings, reduced rings and SNF rings", International Electronic Journal of Algebra, Vol. 4, No., pp. 9-26.
- [10] Yue Chi Ming, R. (1980) "On V-rings and prime rings" Journal of algebra, Vol. 62, pp. 13-20.
- [11] Yue Chi Ming, R. (1983) "On quasi-injectivity and Von Neumann regularity" Mh. Math., Vol. 95, pp. 25-32.