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 الملخص

التفاضلية نوع فولترة  -على المعادلات التكامليةلابلاس  -في هذا البحث نطبق طريقة تحويل يانك     

على الحلول التقريبية.  لمحلية للحصولا الكسرية التفاضليةمن الصنف الثاني ضمن المؤثرات 

طريق  يوفر لنا سللو الاهذا الإجراءات التكرارية تستند على المؤثرات التفاضلية الكسرية المحلية.  

بعض الأمثلة الكسرية المحلية.  المتغايرطريقة التكرار  مع بالمقارنة حسا  أقل حل مع لإيجادملائم 

 .المعادلات التكاملية لحل وبسيط فعالة جدا أداة هي لطريقةأن ا أظهرت النتائج .التوضيحية نوقشت

 

Abstract 

     In this paper, we use the Yang-Laplace transform on Volterra integro-

differential equations of the second kind within the local fractional integral 

operators to obtain the nondifferentiable approximate solutions. The iteration 

procedure is based on local fractional derivative operators. This approach 

provides us with a convenient way to find solution with less computation as 

compared with local fractional variational iteration method. Some illustrative 

examples are discussed. The results show that the methodology is very 

efficient and simple tool for solving integral equations. 

 Keywords: Volterra integro-differential equations, Local fractional 

Laplace transform method, Local fractional derivative operator, Local 

fractional integral operator. 

 

1. Introduction 

The Yang-Laplace transform in fractal space is a generalization of Laplace 

transforms derived from the local fractional calculus. Several analytical and 

numerical techniques were successfully applied to deal with integral 

equations within local fractional derivative operators such as local fractional 

variational iteration method (Neamah, (2014)), Adomian decomposition 
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method (Yang and  Zhang, (2012)), Picard’s successive approximation 

method (Yang(5th reference) ,(2012)) and another method.  

       The standard k  order local fractional Volterra integro-differential 

equation of the second kind is given by (Neamah, (2014)): 
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with the initial conditions 

      1,.....,1,0,)0()(  kmam
m ,                                                             (1.2) 

where ),( txk is the kernel of the local fractional integral equation, and )(xf is 

a local fractional continuous function.  

         The Laplace transform is an essential mathematical tool for the design, 

analysis and monitory of systems and shows insight into the transient 

behavior the steady state behavior, and the stability of continuous time 

systems. However, the classical Laplace-transform does not deal with fractal 

functions, which are local fractional continuous non-differential functions 

(Yang(6th reference), (2012)).In this paper, we investigate the application of 

local fractional Laplace transform method for solving the local fractional 

Volterra integro-differential equation of the second kind. This paper is 

organized as follows: In section 2, the concept of local fractional calculus and 

integrals are given. In section 3, Laplace transform method is proposed based 

on local fractional integrals. Illustrative examples are shown in section 4. 

Conclusions are given in section 5. 

 

2. Mathematical Fundamentals 

In this section we present some basic definitions and notations of the local 

fractional calculus [see ( Yan , et al, (2014), Yang(7th reference),( 2012), 

Yang(8th reference),( 2014) and Jassim, et al,(2015))]. 

Definition 1.  The local fractional derivative of )(x  of  order   at 0xx   is 

given by 
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where )).()(()1())()(( 00 xxxx     

The formulas of local fractional derivatives of special functions used in the 

paper are as follows: 
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Definition 2. The local fractional integral of )(x  of order   in the interval 

],[ ba  is given by 
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where the partitions of the interval ],[ ba  are denoted as ,),( 1jj tt with 

jjj ttt  1 , at 0 , btN   and ,.....},,max{ 10 ttt  .1,...,0  Nj  

 

The formulas of local fractional integrals of special functions used in the 

paper are as follows: 
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Definition 3.  Let 
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. The Yang-Laplace transforms 

of  )(x is given by                           
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where the latter integral converges and . Rs   

 

Definition 4. The inverse formula of the Yang-Laplace transforms of )(x is 

defined as  
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where   is   ,  
i  is the fractal imaginary unit and .0)Re(  s  

Definition 5. The convolution of two functions is defined symbolically by 
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or 
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Theorem 1. (The convolution theorem) 
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Theorem 2. 
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3. Local Fractional Laplace Transform Method 

In view of the convolution theorem for the Yang Laplace transform, if the 

kernel ),( txK in equation (1.1) be a difference kernel. Then the local 

fractional Volterra integro-differential equation can thus be written as 
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By taking Yang Laplace transform of both sides of (3.7)  
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Substituting the initial conditions into (3.2), we obtain 
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Solving (3.4) for )(, sL
s
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The solution )(x  is obtained by applying  the inverse Yang Laplace 

transform of both sides of    (3.5). Therefore, we obtain 
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4. Illustrative Examples 

Example 1. Let us consider the following Volterra integro-differential 

equation of the second kind involving local fractional derivative:  
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Taking the Yang Laplace transform of (4.1) gives 
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 ,                                                            (4.2) 

so that 
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Using the given initial condition and solving for )(, sU L
s
  we find 
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By taking the Yang-Laplace inverse of the equation (4.4), the 

nondifferentiable solution is given by 

      )()( 
 xExu  ,                                                                                       (4.5) 

which is equal to the result based on the local fractional variational iteration 

method (Neamah, (2014)). 

 

Example 2: Consider the following Volterra integro-differential equation of 

the second kind involving local fractional derivative: 
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The Yang-Laplace transform of equation (4.6) yields 
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Using the given initial condition and solving for )(, sU L
s
  we find 
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By taking the inverse Yang-Laplace transform of both sides (4.9), the 

nondifferentiable solution is given by 

      )(cosh)(
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which is equal to the result based on the local fractional variational iteration 

method (Neamah, (2014)). 

 

Example 3. Consider the following local fractional Volterra integro-

differential equation of the second kind with given initial condition 
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with given initial condition 

      1)0()0()0()0( )3()2()(   uuuu .                                                  (4.12) 

Taking the Yang Laplace transform of (4.11) gives 
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Using the given initial conditions (4.12) and solving for )(, sU L
s
  we obtain 
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By taking the inverse Yang-Laplace transform of both sides (4.11), the 

nondifferentiable solution is given by 

      )()( 
 xExu  .                                                                                     (4.16) 

 

5. Conclusions 

In this work, we considered the local fractional Laplace transform method to 

solve the Volterra integro-differential equations of the second kind within the 

local fractional operators and their nondifferentiable approximate solutions 

were obtained. The proposed method is a powerful tool for solving many 

integral equations within the local fractional derivatives.  
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