EFFECT OF TRANSVERSE BASE RESTRAINT ON THE CRACKING BEHAVIOR OF MASSIVE CONCRETE

Adnan F. Ali
Baghdad University

Omar Al-Farouq Al-Damluji
Baghdad University

Ala'a H. A. Al-Zuhairi
Baghdad University

Abstract

The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method.

The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested by ACI Committee 209 and inverted to equivalent temperature differences to be added algebraically to the temperature differences obtained from thermal analysis.

Willam-Warnke model with five strength parameters is used in modeling of concrete material in which cracking and crushing behavior of concrete can be included. The ANSYS program was employed in a modified manner to perform the above analyses.

A thick concrete slab of 1.5 m in thickness and 10 m in length was analyzed for different widths $2,4,8$, and 10 m to produce different aspect ratios (B / L) of $0.2,0.4,0.8$, and 1.0 respectively. The results of the analyses show an increase in cracking tendency of mass concrete member as the aspect ratio of the same member is increased due to the effect of transverse base restraint. Accordingly, such effect cannot be ignored in the analysis of base restrained mass concrete structures subjected to temperature and drying shrinkage volume changes.

الخلاصة
في هذا البحث، تم إجراء تحري عن تأٔثير أخذ البعد الثالث في أعضاء الخرسانة الكتلية بنظر الاعتبار على نتشقها. وتتضمن الدراسة إجراء التحليل الحراري والإنشائي لمنشآت الخرسانة الكنايلة. ويتم الحصول على النوزيع الحقيقي لدرجات الحرارة خلال جسم الخرسانة الكتلية من خلال التحليل الحراري للمسألة نتيجة للحرارة المتولدة جراء إماهة السمنت بالإضـافة إلى الظروف

الجوية المحبطة. وهذا يجرى من خلال حل المعادلتين التفاضليليتن للتوصبل والحمل الحراري باستخدام طريقة العناصر المحددة. كما إن طريقة العناصر المحددة أستخدمت أيضا في التحليل الأنشائي وذلك بتبني فكرة مسألكة الأنفعال الابتدائي. كذلك
يتم احنساب النقلصات الحجمية المرافقة لجفاف الخرسانة بالاعتماد على الطريقة المتترحة من قبل معهد الخرسانة الأمريكي لجنة
209 والتي يتم تحويلها إلى ما يكافئها من تغير في درجات الحرارة لتضـاف جبريا إلى التغيرات بدرجات الحرارة التي تم الحصول عليها من التحليل الحراري.
لقد تم تبني نموذج ويـلام-ورانك ذات خمسـة معاملات مقاومـة لتمثنيل مـادة الخرسانة إذ يتضمن هذا النموذج تصـرف
الخرسانة في حالتي ألتشقق والتهشم. هذا وتم استخدام برنامج ANSYS وبطريقة معدلة لإنجاز التحليلين المشار أليهما أُعلاه.

```
ت\mp@code{تحليل بلاطة خرسانية بسمك 1.5م وطول 10م وبأعراض مختلفة 2، 4، }8\mathrm{ و 10م لتحقيق نسب جانبية عرض/طول}
```



```
الجانبية بسبب تأثبر تقيبي القاعدة العرضي. وعليه، فأن متل هذا التأثبر لا يمكن إهماله في منشآت الخرسانة الكتلية التي تتعرض
    لتغيرات في درجات الحرارة و تقلص الجفاف. 
```


KEYWORDS

Mass concrete, temperature difference, drying volume change, base restraint, concrete cracking.

INTRODUTION

Mass concrete is an expression usually used for any concrete structure with dimensions large enough to cause structural problems during and after the construction period. These problems are mainly the occurrence of cracking due to temperature variations and shrinkage volume changes. Like any solid material, concrete is affected by increase and decrease of temperature. The effect appears as a thermal strain that occurs within the concrete structure when it is prevented or restricted from motion, i.e., restrained. The second category of volume change is the drying shrinkage, which is related to the drying and shrinking of the cement gel.

ACI 207 Committee (ACI Committee 1995) suggested the following equations to be used to calculate the degree of restraint for rigid continuous base restraint.

$$
\begin{array}{lc}
K_{R}=[(L / H-2) /(L / H+1)]^{h / H} & \text { for } L / H \geq 2.5 \tag{1}\\
K_{R}=[(L / H-1) /(L / H+10)]^{h / H} & \text { for } L / H<2.5
\end{array}
$$

where
$\mathrm{L} / \mathrm{H}=$ length to height ratio, and
$\mathrm{h}=$ the height at which the degree of restraint is calculated.
As can be noticed, ACI 207 Committee neglects the effect of the restraint in the transverse direction and hence, eq. (1) can be applied to the concrete walls only. Therefore, it is the objective of the present study to investigate the effect of transverse base restraint, i.e., effects of $3{ }^{\text {rd }}$ dimension on the behavior of massive concrete and therefore cracking tendency and cracking prevention in such structures.

THERMAL ANALYSIS

Based on Fourier's Law for heat transfer, the heat conduction equation can be expressed as follows (Holman, 1981):
$k_{x} \frac{\partial^{2} T}{\partial x^{2}}+k_{y} \frac{\partial^{2} T}{\partial y^{2}}+k_{z} \frac{\partial^{2} T}{\partial z^{2}}+\bar{q}=\rho c_{p} \frac{\partial T}{\partial t}$
where,
$\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}$ and $\mathrm{k}_{\mathrm{z}}=$ heat conductivity of the material in x, y and z -direction respectively,
$\mathrm{T}=$ the difference between absolute and reference temperatures,
$\bar{q}=$ heat generation per unit volume,
$\mathrm{c}_{\mathrm{p}}=$ specific heat, and
$\rho=$ density.
On the other hand, heat may transfer by convection according to the following Newton formula (Holman, 1981):

$$
\begin{equation*}
q=\int_{A} h_{c v}\left(T-T_{\infty}\right) d A \tag{3}
\end{equation*}
$$

where,
$h_{c v}=$ convection heat transfer coefficient (film coefficient).
$T_{\infty}=$ bulk fluid temperature.
$T=$ temperature.
Both of the above equations may be descritized using Raylieh-Ritz variation process to derive an expression employing the finite difference method to overcome the time-rate nature of the problem, that is,
$\left\lfloor K_{e}^{*}\right\rfloor\left\{\Delta \delta_{(t)}\right\}=\left\{F^{*}\right\}$
where,

$$
\begin{aligned}
& {\left[K_{e}^{*}\right]=\left[K_{e}\right]+\frac{[C]}{\Delta t}} \\
& \left\{F^{*}\right\}=\left\{\Delta F_{(t)}\right\}+\frac{[C]}{\Delta t}\left\{\Delta \delta_{(t-\Delta t)}\right\}
\end{aligned}
$$

Eq. (4) is used in the finite element method to predict the temperature distribution within the mass concrete body invoking the described initial and boundary temperatures as follows:

1. Initial temperature $=$ concrete placement temperature $=20^{\circ} \mathrm{C}$.
2. Bulk ambient temperature T_{∞} which is specified for Baghdad climate according to Kammouna, 2001, from:

T_{∞}	$=$	29.815	-	$15.291 * \cos (0.893 t)$

where, t is time in days.

SHRINKAGE STRAIN CALCULATION

Following the procedure recommended by (ACI Committee 209, 1992) and taking the ambient circumstances and concrete mixing and placing conditions, the drying shrinkage strains may be calculated as a function of time after curing period for concrete which is assumed to be seven days.

Quoting the concept of evaporable moisture content that was adopted by Carlson, 1937, the distribution of drying shrinkage strains may be assessed within the body of mass concrete member. Table (1) shows such distribution in which the values of drying shrinkage strains seem very low. Such observation may be related to the non-convenience of eq. (6) that was suggested by ACI 209 Committee (ACI Committee, 1992) and used to estimate shrinkage strain-time relation.
$\left(\varepsilon_{s h}\right)_{t}=\frac{t}{35+t}\left(\varepsilon_{s h}\right)_{u}$
where,
$\left(\varepsilon_{s h}\right)_{t}=$ shrinkage strain at any time t (in days), and
$\left(\varepsilon_{s h}\right)_{u}=$ ultimate shrinkage strain $=780 * 10^{-6}$.
As can be seen from eq. (6) 50% only of the ultimate shrinkage strain occurs at 35 days after curing. However, one can conclude from the trend of the drying shrinkage strains as they are
decreased with the increase in the width of the slab as the major cause of cracking in large mass concrete members is the temperature variation rather than shrinkage volume changes.

ADOPTED COSTITUTIVE RELATIONSHIP FOR CONCRETE

The concrete was modeled using Willam and Wranke model (Willam and Wranke, 1974) which predicts failure of brittle materials in which the cracking and crushing modes should be accounted for. The criterion for failure of concrete due to a multiaxial stress state can be expressed in the form:

$$
\begin{equation*}
\frac{F}{f_{c}^{\prime}}-S \geq 0 \tag{7}
\end{equation*}
$$

where,
$\mathrm{F}=\mathrm{a}$ function of the principal stress state $\left(\sigma_{\mathrm{xp}}, \sigma_{\mathrm{yp}}, \sigma_{\mathrm{zp}}\right)$,
$S=$ failure surface expressed in terms of principal stresses and five input strength parameters as follows:
$f_{t}^{\prime}=$ ultimate uniaxial tensile strength in MPa
$f_{c}^{\prime}=$ ultimate uniaxial compressive crushing strength in MPa,
$f_{c b}=$ ultimate biaxial compressive strength in Mpa,
$\sigma_{\mathrm{h}}=$ ambient hydrostatic stress state in MPa,
$f_{l}=$ ambient hydrostatic stress state of biaxial superimposed on hydrostatic stress state in Mpa, and
$f_{2}=$ ambient hydrostatic stress state of uniaxial superimposed on hydrostatic stress state in Mpa.
For simplicity, Willam and Warnke, 1974, suggested the following equations to calculate three of strength parameters in terms of f_{c}^{\prime} in case of $\left|\sigma_{h}\right| \leq \sqrt{3} f_{c}^{\prime}$. Thus, the failure surface S can be specified with a minimum two constants, f_{t}^{\prime} and f_{c}^{\prime}.
$f_{c b}=1.2 f_{c}^{\prime}$
$f_{1}=1.45 f_{c}^{\prime}$
$f_{2}=1.725 f_{c}^{\prime}$
Failure of concrete is categorized into four domains. In each domain, independent functions were specified to describe the function F and the failure surface S . The failure surface S can be seen in Fig. (1).

Compression-Compression-Compression Domain $\left(0 \leq \sigma_{1} \leq \sigma_{2} \leq \sigma_{3}\right)$

In this case, F takes the form:

$$
\begin{equation*}
F=F_{1}=\frac{1}{\sqrt{15}}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

and the failure surface S is defined as:

$$
\begin{equation*}
S=S_{1}=\frac{2 r_{2}\left(r_{2}^{2}-r_{1}^{2}\right) \cos \eta+r_{2}\left(2 r_{1}-r_{2}\right)\left[4\left(r_{2}^{2}-r_{1}^{2}\right) \cos ^{2} \eta+5 r_{1}^{2}-4 r_{1} r_{2}\right]^{\frac{1}{2}}}{4\left(r_{2}^{2}-r_{1}^{2}\right) \cos ^{2} \eta+\left(r_{2}-2 r_{1}\right)^{2}} \tag{10}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \cos \eta=\frac{2 \sigma_{1}-\sigma_{2}-\sigma_{3}}{\sqrt{2}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]^{\frac{1}{2}}} \text { in which } \eta=\text { angle of similarity, and } \\
& r_{1}=a_{0}+a_{1} \xi+a_{2} \xi^{2} \\
& r_{2}=b_{0}+b_{1} \xi+b_{2} \xi^{2} \\
& \xi=\frac{\sigma_{h}}{f_{c}^{\prime}}
\end{aligned}
$$

The undetermined coefficients $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}$, and b_{2} are discussed below.
When $\eta=0^{\circ}, S_{1}$ in eq. (10) is equal to r_{1} while if $\eta=60^{\circ}, S_{1}$ is equal to r_{2}. Therefore, the function r_{1} represents the failure surface of all stress states with $\eta=0^{\circ}$.

The function r_{1} is determined by adjusting $\mathrm{a}_{0}, \mathrm{a}_{1}$, and a_{2} such that $f_{t}^{\prime}, f_{c b}$ and f_{l} all lie on the failure surface. Mathematically:

$$
\left\{\begin{array}{l}
\frac{F_{1}}{f_{c}^{\prime}}\left(\sigma_{1}=f_{t}^{\prime}, \sigma_{2}=\sigma_{3}=0\right) \tag{11}\\
\frac{F_{1}}{f_{c}^{\prime}}\left(\sigma_{1}=0, \sigma_{2}=\sigma_{3}=-f_{c b}\right) \\
\frac{F_{1}}{f_{c}^{\prime}}\left(\sigma_{1}=-\sigma_{h}^{a}, \sigma_{2}=\sigma_{3}=-\sigma_{h}^{a}-f_{1}\right)
\end{array}\right\}=\left[\begin{array}{lll}
1 & \xi_{t} & \xi_{t}^{2} \\
1 & \xi_{c b} & \xi_{c b}^{2} \\
1 & \xi_{1} & \xi_{1}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right\}
$$

in which $\xi_{t}=\frac{f_{t}^{\prime}}{3 f_{c}^{\prime}}, \xi_{c b}=\frac{f_{c b}}{3 f_{c}^{\prime}}$, and $\xi_{1}=-\frac{\sigma_{h}^{a}}{f_{c}^{\prime}}-\frac{2 f_{l}}{3 f_{c}^{\prime}}$.
The proper values for the coefficient $\mathrm{a}_{0}, \mathrm{a}_{1}$, and a_{2} can be determined through the solution of the simultaneous equations given in eq. (11).

The function r_{2} is calculated by adjusting b_{0}, b_{1}, and b_{2} to satisfy the conditions:

$$
\left\{\begin{array}{l}
\frac{F_{1}}{f_{c}^{\prime}}\left(\sigma_{1}=\sigma_{2}=0, \sigma_{3}=-f_{c}^{\prime}\right) \tag{12}\\
\frac{F_{1}}{f_{c}^{\prime}}\left(\sigma_{1}=\sigma_{2}=-\sigma_{h}^{a}, \sigma_{3}=-\sigma_{h}^{a}-f_{2}\right) \\
0
\end{array}\right\}=\left[\begin{array}{ccc}
1 & -\frac{1}{3} & \frac{1}{9} \\
1 & \xi_{2} & \xi_{2}^{2} \\
1 & \xi_{0} & \xi_{0}^{2}
\end{array}\right]\left\{\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right\}
$$

where,
ξ_{2} is defined by: $\xi_{2}=-\frac{\sigma_{h}^{a}}{f_{c}^{\prime}}-\frac{f_{2}}{3 f_{c}^{\prime}}$.
and ξ_{0} is the positive root of the equation:
$r_{2}\left(\xi_{0}\right)=a_{0}+a_{1} \xi_{0}+a_{2} \xi_{0}^{2}$
in which a_{0}, a_{1}, and a_{2} are evaluated by eq. (11).

Since the failure surface must remain convex, the ratio r_{1} / r_{2} is restricted to the range $\left(0.5<r_{1} / r_{2}<1.25\right)$, although the upper bound is not considered to restriction since ($r_{1} / r_{2}<1.0$) for most materials. Also, the coefficients $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{0}, \mathrm{~b}_{1}$, and b_{2} must satisfy the conditions:
$\mathrm{a}_{0}>0, \mathrm{a}_{1} \leq 0, \mathrm{a}_{2} \leq 0$
$\mathrm{b}_{0}>0, \mathrm{~b}_{1} \leq 0, \mathrm{~b}_{2} \leq 0$
Therefore, the failure surface is closed and predicts failure under high hydrostatic pressure $\left(\xi<\xi_{2}\right)$. This closure of the failure surface has not been verified experimentally and it has been suggested that Von Mises type cylinder is a more valid failure surface for large compressive σ_{h}-values. Consequently, it is recommended that values of f_{1} and f_{2} are selected at a hydrostatic stress level in the vicinity of or above the expected maximum hydrostatic stress encountered in the structure.

Eq. (9) describes the condition that the failure surface has an apex at $\xi=\xi_{0}$. A profile of r_{1} and r_{2} as a function of ξ is shown in Fig. (2). The lower curve represents all stress state such that $\eta=$ 0° while the upper curve represents stress state such that $\eta=60^{\circ}$. If the failure criterion is satisfied, the material is assumed to crush.

Tension-Compression-Compression Domain $\left(\sigma_{1} \geq 0 \geq \sigma_{2} \geq \sigma_{3}\right)$

In this regime, F takes the form:

$$
\begin{equation*}
F=F_{2}=\frac{1}{\sqrt{15}}\left[\left(\sigma_{2}-\sigma_{3}\right)^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right]^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

and S is defined as:
$S=S_{2}=\left(1-\frac{\sigma_{1}}{f_{t}^{\prime}}\right) \frac{2 p_{2}\left(p_{2}^{2}-p_{1}^{2}\right) \cos \eta+p_{2}\left(2 p_{1}-p_{2}\right)\left[4\left(p_{2}^{2}-p_{1}^{2}\right) \cos ^{2} \eta+5 p_{1}^{2}-4 p_{1} p_{2}\right]^{\frac{1}{2}}}{4\left(p_{2}^{2}-p_{1}^{2}\right) \cos ^{2} \eta+\left(p_{2}-2 p_{1}\right)^{2}}$
where $\cos \eta$ is already defined above, and

$$
\begin{aligned}
& p_{1}=a_{0}+a_{1} \chi+a_{2} \chi^{2} \\
& p_{2}=b_{0}+b_{1} \chi+b_{2} \chi^{2} \\
& \chi=\frac{1}{3}\left(\sigma_{2}+\sigma_{3}\right)
\end{aligned}
$$

The coefficients $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{0}, \mathrm{~b}_{1}$, and b_{2} are defined by eq. (11) and eq. (12).
If the failure criterion is satisfied, cracking occurs in the plane perpendicular to the principal stress σ_{1}.

Tension- Tension -Compression Domain ($\sigma_{1} \geq \sigma_{2} \underline{\geq 0} \geq \sigma_{3}$)

Here the function F takes the form:

$$
\begin{equation*}
F=F_{3}=\sigma_{i} ; i=1,2 \tag{16}
\end{equation*}
$$

and the failure surface S is defined as:

$$
\begin{equation*}
S=S_{3}=\frac{f_{t}^{\prime}}{f_{c}^{\prime \prime}}\left(1+\frac{\sigma_{3}}{S_{2}\left(\sigma_{i}, 0, \sigma_{3}\right)}\right) ; i=1,2 \tag{17}
\end{equation*}
$$

If the failure criterion for both $\mathrm{i}=1,2$ is satisfied, cracking occur in the planes perpendicular to principal stresses σ_{1}, σ_{2}. If the failure criterion is satisfied only for $i=1$, cracking occurs only in the plane perpendicular to principal stress σ_{1}.

Tension- Tension - Tension Domain $\left(\sigma_{1} \geq \sigma_{2} \geq 0 \geq \sigma_{3}\right)$

In this regime, F takes the form:

$$
\begin{equation*}
F=F_{4}=\sigma_{i} ; i=1,2,3 \tag{18}
\end{equation*}
$$

and S is defined as:

$$
\begin{equation*}
S=S_{4}=\frac{f_{t}^{\prime}}{f_{c}^{\prime}} \tag{19}
\end{equation*}
$$

If the failure criterion is satisfied in directions1, 2, and 3, cracking occurs in the planes perpendicular to principal stresses σ_{1}, σ_{2}, and σ_{3}, otherwise, cracking occurs in plane or plane perpendicular to the directions of principal stresses where the failure criterion is satisfied.

IMPLEMENTATION OF THE FINITE ELEMENT METHOD

According to Fung, 1965, the effect of temperature changes on an elastic body subjected to external forces may be determined using one of the followings:

1. Solution of the discretized form of the coupled thermo-elastic equation in which the effect of both temperature and displacement on each other may be determined, i.e. the displacement due to unit temperature change and vice versa. However, this procedure is not usually used especially in problems where the temperature changes are not high enough like in mass concrete problem.
2. When the simplifying assumptions mentioned in (1) above are introduced, the theory is referred to as an uncoupled, quasi-static theory; it degenerates into heat conduction and thermoelasticity as two separate problems. Experience shows that the change of temperature of an elastic body due to adiabatic straining is, in general, very small. If this interaction between strain and temperature is ignored, then the only effects of elasticity on the temperature distribution are effects of change in dimensions of the body under investigation. The change in dimension of a body is of the order of product of the linear dimension of the body L , the temperature rise $\Delta \mathrm{T}$, and the coefficient of thermal expansion α. If $\mathrm{L}=1 \mathrm{~m}$ and $\Delta \mathrm{T}=100^{\circ} \mathrm{C}, \alpha=10^{*} 10^{-6}$ per ${ }^{\circ} \mathrm{C}$, the change in dimension is $10^{-3} \mathrm{~m}$, which is negligible in problems of heat conduction.

The equivalent temperature changes to the estimated drying shrinkage strains may be calculated using the following simple relation:

$$
\begin{equation*}
\Delta T_{D S}=\frac{\varepsilon_{s h}}{\alpha_{c}} \tag{20}
\end{equation*}
$$

where,
$\Delta \mathrm{T}_{\mathrm{DS}}=$ drying shrinkage equivalent temperature change,
$\varepsilon_{\text {sh }} \quad=$ shrinkage strain, and
$\alpha_{c} \quad=$ coefficient of thermal expansion of concrete.
Then the equivalent temperature changes to drying shrinkage may be added algebraically to the temperature changes resulting from thermal analysis. The effect of this sum of temperatures, which appears as thermal stress and strain, may be detected using the second method described in (2) above. This means that the problem is treated as "an initial stress or strain" problem. The term "initial stress" signifies a stress present before deformations are allowed. Effectively, it is a
residual stress to be superposed on stress caused by deformation. The effect of temperature changes can be placed as initial strain ε_{0}, or initial stress and strain σ_{0} and ε_{0}. Both are viewed as alternative ways to express the same thing (Cook, 1989).

In a linear elastic material, the stress-strain relation is (Cook, 1989):

$$
\begin{equation*}
\varepsilon=\frac{\sigma}{E}+\varepsilon_{o} \tag{21}
\end{equation*}
$$

where,

$$
\varepsilon_{o}=\text { initial strain }=\alpha_{c} \Delta T
$$

or,

$$
\begin{equation*}
\sigma=E\left(\varepsilon-\varepsilon_{o}\right) \tag{22}
\end{equation*}
$$

The strain energy U_{o} is defined as (Cook, 1989):

$$
\begin{equation*}
U_{o}=\int_{v} \frac{\sigma \varepsilon}{2} d v \tag{23}
\end{equation*}
$$

Substituting eq. (22) into eq. (23):

$$
U_{o}=\int_{v} \frac{E}{2}\left(\varepsilon-\varepsilon_{o}\right)^{2} d v
$$

or,
$U_{o}=\int_{v} \frac{E}{2}\left(\varepsilon^{2}-2 \varepsilon_{o}+\varepsilon_{o}^{2}\right) d v$

The third term in the parenthesis in eq. (24) can be omitted since it is independent of nodal displacements. Then its derivative is equal to zero. Thus,
$U_{o}=\int_{v} \frac{E}{2}\left(\varepsilon^{2}-2 \Sigma_{o}\right) d v$
Writing $u_{o}=\frac{E}{2}\left(\varepsilon^{2}-2 £_{o}\right) d v=$ is the energy per unit volume. Hence, for a state of multiaxial stresses:
$u_{o}=\frac{1}{2}\left\lfloor\varepsilon \|[D]\{\varepsilon\}-\lfloor\varepsilon\rfloor[D]\left\{\varepsilon_{o}\right\}\right.$
where
[D] = the constitutive relations matrix for concrete and is defined for linear-elastic material as follows (Cook, 1989):

$$
[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccccc}
(1-v) & v & v & 0 & 0 & 0 \tag{27}\\
v & (1-v) & v & 0 & 0 & 0 \\
v & v & (1-v) & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1-2 v}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1-2 v}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right]
$$

The potential of external load may be expressed as:

$$
\begin{equation*}
\Omega_{e x}=-\lfloor u\rfloor\{\phi\} \tag{28}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \lfloor u\rfloor=\text { the displacement field vector, and } \\
& \{\phi\}=\text { the load vector. }
\end{aligned}
$$

Furthermore, the potential of body forces is given by:

$$
\begin{equation*}
\Omega_{b f}=\lfloor u\rfloor\{\bar{F}\} \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
\{\bar{F}\}= & \text { the body force vector, which is any force distributed over the entire volume of the } \\
& \text { body like the self-weight. }
\end{aligned}
$$

The total potential energy per unit volume can be written in the form (Cook, 1989):

$$
\begin{equation*}
\Pi_{p_{o}}=U_{o}+\Omega=\frac{1}{2}\lfloor\varepsilon\rfloor[D]\{\varepsilon\}-\lfloor\varepsilon\rfloor[D]\left\{\varepsilon_{o}\right\}-\lfloor u\rfloor\{\phi\}-\lfloor u\rfloor\{\bar{F}\} \tag{30}
\end{equation*}
$$

The total potential within the element is:
$\Pi_{p_{e}}=\int_{v} \Pi_{p_{o}} d v$
or,

$$
\begin{equation*}
\left.\Pi_{p_{e}}=\frac{1}{2} \int_{v}\lfloor\varepsilon\rfloor[D]\{\varepsilon\} d v-\int_{v}\lfloor\varepsilon\rfloor[D]\left\{\varepsilon_{o}\right\} d v-\int_{s}\langle u\rfloor\{\phi\} d s-\int_{v} u\right\rfloor\{\bar{F}\} d v \tag{32}
\end{equation*}
$$

Since,

$$
\begin{equation*}
\{u\}=[N]\{e\} \tag{33}
\end{equation*}
$$

where,
$[\mathrm{N}]=$ shape function matrix, and
$\{\mathrm{e}\}=$ nodal displacement vector.

Also,

$$
\begin{equation*}
\{\varepsilon\}=[B]\{e\} \tag{34}
\end{equation*}
$$

where,

$$
[\mathrm{B}]=\text { strain-nodal displacement matrix. }
$$

Hence,

$$
\begin{equation*}
\left.\Pi_{p_{e}}=\frac{1}{2} \int_{v}[e \| B]^{T}[D]\{e\} d v-\int_{v}\left[e \| B \rrbracket[D]\left\{\varepsilon_{o}\right\} d v-\int_{s} L e\right\rfloor[N]^{T}\{\phi\} d s-\int_{v} L e\right\rfloor[N]\{\bar{F}\} d v \tag{35}
\end{equation*}
$$

which after simplification and introducing effects of externally applied nodal forces becomes:

$$
\begin{equation*}
\Pi_{p_{e}}=\frac{1}{2}\lfloor e\rfloor[K]\{e\}-\lfloor e\rfloor\{R\}-\lfloor e\rfloor\{F\} \tag{36}
\end{equation*}
$$

where, $\{F\}=$ externally applied nodal forces vector.
Applying the minimization of the total potential yields:
$\frac{\partial \Pi_{p}}{\partial\{e\}}=0$
or,

$$
\begin{equation*}
[K]\{e\}=\{F\}+\{R\} \tag{37}
\end{equation*}
$$

where, $\{R\}=\int_{v}[B]^{T}[D]\left\{\varepsilon_{o}\right\} d v+\int_{v}[N]^{T}\{\bar{F}\} d v+\int_{s}[N]^{T}\{\phi\} d s$
Eq. (37) will be used in the analysis of the mass concrete due to effects of temperature and drying shrinkage volume changes.

COMPUTER IMPLEMENTATION

Besides the "Graphical User Interface (GUI)" that is commonly used in software packages, ANSYS program proposes a programming language similar to some extent to the conventional FORTRAN language. The proposed language is referred as APDL (ANSYS Parametric Design Language).

A modified ANSYS program is adopted in this study. This consists of a main program and four subprograms. The main program contains the principal steps of analysis and required calls for subprograms. Each of these subprograms is responsible of some limit tasks like:

- Performing the thermal analysis,
- Storing temperature values in a pre-dimensioned array,
- Calculating drying shrinkage strains throughout the concrete body, and
- Conducting the nonlinear structural analysis by considering the effect of concrete aging via updating concrete strength parameters $\left(f_{t}^{\prime}, f_{c}^{\prime}, E_{c}\right)$ after deleting the thermal finite element mesh and constructing a new structural one.

Two Types of elements are used in this program:

1. Thermal Solid 70: This element is an eight-noded brick element with one degree of freedom, temperature, at each node. The element is applicable to a three-dimensional, steady state or transient thermal analysis.
2. Structural Solid 65 :This element is used for the three-dimensional modeling of the concrete with or without reinforcing bars. The element is defined by eight nodes having three degrees of freedom at each node: translations in the global x, y, and z directions. It is capable of considering cracking in tension and crushing in compression.

PROBLEM DESCRIPTION AND RESULTS

To investigate the effect of the transverse base restraint on the cracking behavior of mass concrete member due to temperature variation and drying shrinkage volume changes, a nonlinear finite element analysis was applied to base restrained thick concrete slab. Four different aspect ratios (width/length) were considered for the case of a slab with fixed bottom cast at the first of January (winter concrete placement) in Baghdad. The aspect ratios were 0.2, 0.4, 0.8, and 1.0 and obtained by fixing the length of the slab to 10 meters and varying the width as $2,4,8$, and 10 meters. In all these cases, the thickness of the slab was taken as 1.5 m .

Thermal and structural analyses were conducted on the slab including all the surrounding circumstances and boundaries utilizing the finite element mesh shown in Fig. (3).

The temperature distribution in the central sections along the length and width directions at some times after concrete placement are shown in Figs. (4) to (15). The assessed final cracking pattern of the concrete slabs with different aspect ratios can be seen in Figs. (16) to (19).

CONCLUSIONS

The following conclusions can be drawn from the results of the analysis:

* Value of peak temperature increases with increasing aspect ratio (B / L) of the slab. This may be related to the increase in the magnitude of heat generated upon concrete placement due to volume increase.
* A small temperature drop at the $28^{\text {th }}$ day of concrete age is noticed as the ratio B / L is increased. This is related to the effect of the volume to surface ratio (V/S), since the temperature increases with increasing the aspect ratio (B / L).
* The number of primary cracks (cracks that extend over the entire thickness) increase with increasing width of the slab, i.e., the aspect ratio. This can be interpreted as a result of the considerable increase in restraint provided by the slab base and the increase in the maximum temperature due to the hydration process after concrete placement.
* The full-depth cracks are concentrated at the central portion of the slab where the maximum drop in temperature occurs.

From the above and since it was concluded previously that the major cause of cracking in the thick slabs is temperature drop, the effect of the third dimension (width) cannot be ignored when the response (stresses and cracking) of this type of structures is required. Unfortunately, most of the standards like ACI-Committee neglect the effect of the third dimension and assume a uniform temperature distribution.

Table (1) Drying shrinkage strains

(*)	Slab width $=2.0 \mathrm{~m}$					Slab width $=4.0 \mathrm{~m}$					Slab width $=8.0 \mathrm{~m}$					Slab width $=10.0 \mathrm{~m}$				
	After ... days					After ... days					After ... days					After ... days				
	8	14	28	90	180	8	14	28	90	180	8	14	28	90	180	8	14	28	90	180
0	0.5	3.2	7.5	18.0	24.3	0.2	1.3	3.0	7.1	9.6	0. 1	0.6	1.4	3.3	4.4	0.08	0.48	1.12	2.7	3.6
0.2	0.2	1.3	3.1	7.5	10.3	0.1	0.5	1.2	3.0	4.1	0.04	0.25	0.57	1.4	1.9	0.03	0.2	0.47	1.13	1.5
0.4	0.07	0.4	1.01	2.4	3.2	0.03	0.17	0.4	0.96	1.3	0.01	0.08	0.19	0.44	0.63	0.01	0.07	0.15	0.36	0.48
0.6	0.02	0.1	0.3	0.8	1.1	0.01	0.05	0.12	0.3	0.45	0	0.02	0.05	0.14	0.21	0	0.02	0.04	0.11	0.17
0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

${ }^{(*)} \mathrm{d} / \mathrm{H}$ defines the ratio of the depth from top surface / the slab thickness H .

Fig.(1): Failure surface in principal stress space with nearly biaxial stress state, after ANSYS Inc.

Fig. (2): A profile of the failure surface, after ANSYS Inc.

Notes:
$-\mathrm{w}_{\mathrm{e}}=$ concrete element width $($ variable $)=0.25,0.5,1.0$, or 1.5 m .

- Dimensions are not to scale.

Fig. (3): Finite element mesh for a thick concrete slab problem

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (4): Temperature distribution in a slab with $\mathrm{B} / \mathrm{L}=0.2$ (3 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (5): Temperature distribution in a slab with $\mathrm{B} / \mathrm{L}=0.2$ (28 days after placement)

Fig. (6): Temperature distribution in a slab with $\mathrm{B} / \mathrm{L}=0.2$ (180 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (7): Temperature distribution in a slab with $B / L=0.4$ (3 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (8): Temperature distribution in a slab with $\mathrm{B} / \mathrm{L}=0.4$ (28 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (9): Temperature distribution in a slab with $B / L=0.4$ (180 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (10): Temperature distribution in a slab with $\mathrm{B} / \mathrm{L}=0.8$ (3 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (11): Temperature distribution in a slab with $B / L=0.8$ (28 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (12): Temperature distribution in a slab with $B / L=0.8$ (180 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (13): Temperature distribution in a slab with $\mathrm{B} / \mathrm{L}=1.0$ (3 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (14): Temperature distribution in a slab with $B / L=1.0$ (28 days after placement)

Note: Temperatures are in ${ }^{\circ} \mathrm{C}$
Fig. (15): Temperature distribution in a slab with $\mathrm{B} / \mathrm{L}=1.0$ (180 days after placement)

Side view of the central section along length direction

Top view
Fig. (16): Final cracking pattern for slab cast in winter with $B / L=0.2$

Side view of the central section along length direction

Top view
Fig. (17): Final cracking pattern for slab cast in winter with $B / L=0.4$

Side view of the central section along length direction

Top view
Fig. (18): Final cracking pattern for slab cast in winter with $\mathrm{B} / \mathrm{L}=0.8$

Side view of the central section along length direction

Top view
Fig. (19): Final cracking pattern for slab cast in winter with $B / L=1.0$

REFRENCES

* ACI Committee 207, "Effect of Restraint, Volume Change, and Reinforcement on Cracking in Massive Concrete", (ACI 207.2R-95). American Concrete Institute, Detroit, 1999, 26 pp.
* ACI Committee 209, "Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures", (ACI 209R-92), (Reapproved 1997). American Concrete Institute, Detroit, 1999, 47 pp.
* ANSYS 5.4 Inc., "ANSYS Theory Reference", Eighth Edition, SAS IP, Inc. 1997, Chapter 4 pp. 48-56.
* Carlson, R. W., "Drying Shrinkage of Large Concrete Members" ACI Journal, Proceedings, Vol. 33, January-February 1937, pp.327-336.
* Cook, R. D., Malkas, D. S., and Plesha, M. E., "Concepts and Applications of Finite Element Analysis", John Wiley and Sons Inc., Third edition, 1989, 630 pp.
* Fung, Y. C., "Foundations of Solid Mechanics", Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1965, 525 pp.
* Holman, J. P., "Heat Transfer", Fourth Edition, 1976, McGraw-Hill.

Kammouna, Z. M., "Development of A Mathematical Model for Creep of Concrete with Reference to Baghdad Climate", M.Sc. Thesis, Baghdad University, College of Engineering, 2001, 90 pp.

* Willam, K. J., and Warnke, E. D., "Constitutive Model for the Triaxial Behavior of Concrete", Proceedings, International Association for Bridge and Structural Engineering, Vol. 19, ISMES, Bergamo, Italy, p. 174 (1975).

