A Study of acute toxicity to pyrethroid insecticide “KARATE” on fresh water alga

Scenedesmus quadricauda (Turb.) Bereb.

Jasim Mohammed Salman            Mayson Mahdi Saleh
Biology Dep.- Coll. Of Science-Babylon University-Iraq

Abstract
The study was conducted to evaluate the acute toxicity of insecticide (Karate) upon trough use green algae Scenedesmus quadricauda as test organism in period time(24,72,96) hours under control conditions. The alga was growing in water giving from Al-Hilla river after filtering by Millipore filter paper (0.45)µm.
Triplicates of samples where exposed to insecticides in a different concentrations (0.5,1,3)mg/l. Monitoring was proceeded every 24 hours for four days.
This study include measure the optical density as indicators to density of algae and total count of cell number, growth average and inhibition ratio was study, also LT50 is calculated.
Result show increase concentration of insecticide with increase concentration and recorded high inhibition ratio in concentration 3mg/l is (91.4%) after (96)h, and low value of LT50 in concentration (3)mg/l is (17.78).
This study pointed out that insecticide differs in their toxicity according to concentration and tim exposure.

Key words: acute toxicity; Scenedesmus quadricauda; pyrethroid insecticides.

E.mail: jassim_hilla@yahoo.com
**Introduction:**

Algae considering as being the primary producer in the aquatic environment their importance in providing energy to zooplankton and fish (Vagi *et al.*, 2005).

Algae were used to evaluate the risk of new chemicals via laboratory research and these organisms are used to bioassays to measure the toxicity of waste water stream (Prokhotskaya *et al.*, 2003).

A variety of organic toxic ge\nts such as insecticides, herbicides and other organic compounds have detected in fresh water system, and effect both target and non target organisms when discharged into a water body (Li *et al.*, 2005).

Toxic compounds may affect on algal photosynthesis, growth, enzyme activity and respiration; the action of toxic substance on algae is important not only for the organisms themselves, but also for other links in the food chain (Ma and Liang, 2001). Insecticides are diverse group of widely varying chemical structure from simple inorganic to complex organic molecules, they are released in the environment by volatilization, adsorption, chemical and or microbiological transformations (Rand, 1995), their application can cause adverse effects on aquatic ecosystems in areas near by agricultural fields because those substance can be transferred to the aquatic environment leading to contamination of its flora and fauna; these contaminants may occur during rainfalls or eventually by atmospheric deposition (Vagi, *et al.*, 2005).

In order to evaluate the importance of this aquatic contamination it is necessary to resort to toxicity bioassays (Deneer, 2000). A decrease in algae density and species richness affects the aquatic system directly by reducing their biodiversity and primary products (Abdel-Aty, *et al.*, 2006).

Numerous studies have indicated that pesticides inhibits growth and photosynthesis of fresh water algae and algal responses to this compounds vary widely depending upon concentration use, duration exposure, and algae species tested (Tang *et al.*, 1997).

Pyrethroid insecticides are relatively persistent in water, and its concentrations would not be expected to vary greatly over time specially in short-term bioassays (Solomon *et al.*, 1996). More recent testing procedures have recognized that, because the wide range of sensitivity observed, a batter of species is recommended to improve algal toxicity detection in chemical evaluation (Boutin *et al.*, 1993).

Algae species used in this bioassays *Scenedesmus quadricauda* was chosen in this study because easy to cultivate and its response is highly reproducible (Huang *et al.*, 1994).

The aim of the current study was examine the effect of insecticide "Karate" on growth of green alga *S. quadricauda* and include measure of optical density as indicators to density of algae; % inhibition; and LT50.

**Materials and Methods:**

Fresh water algae *S. quadricauda* was obtained from institute of Biotechnology Baghdad University-Iraq.

The test species grow in natural conditions by use water from Hilla river after sterilized and filtration by Millipore filter paper 0.45µm to released other species of algae and microorganisms as bacteria; pH regulation in lab. By NaoH and H2SO4;
Screw- capped glass tubes (150 mm × 22 mm diameter), each containing 30 ml river water and 14.5 ml from algal culture (Li et al., 2005). Insecticide (Karate) solution (6%) dissolved in water was added to each tube providing nominal concentration of 0.5, 1, and 3 mg/l.

Samples were withdrawn after 24, 72, and 96 hours, each test was replicated three times (Kent and Currie, 1995). From day(0) to day(4) algal cells were taken daily and cell numbers were counted with counting chamber under microscope determine the growth rate and % inhibiting optical density was measured at 680 nm from each sample (Kasai et al., 1993).

The growth rate was calculated according to the equation (Guillard, 1973):

\[ U = \ln(N_t) - \ln(N_0) \]

Where \( U \) is the growth rate, \( N_t \) the cell number at \( t \) time, \( N_0 \) the cell number at \( 0 \) time, \( t \) the sample time for counting cell number, and \( 0 \) is the origin time of the treatment.

The percent inhibition (% I) of algal growth for each concentration was calculated according to (U. S. EPA, 1989).

LT50 were calculated using the probate procedure with log transformed values of test insecticide concentrations (Li et al., 2005). The statistically significant effects of the pesticide on growth of algae species under study was determined using analysis of variance (ANOVA) with SPSS program.

**Results and Discussion:**

The effects of the pesticide (karate) show in figures (1-4). The inhibitory effects on algal growth by optical density, it is decreased with increase the concentration of pesticide and time exposure.

The growth rate of algae measured after the exposure to pesticide by total count of cell survival reflects of cell responses to increasing concentration and inhibition in low doses and cell death in high doses (Prokhotskaya et al., 2003).

The growth of algal cell under study was highly affected by insecticide karate in the number of cells was decreased and the content of pigments and the activity of SOD were highly activity by different types of pesticide (Kong and Sang, 1999).

The effective concentrations that caused 50% inhibition compared with the controls were calculated for the algal species under study (figure 4) at (24, 72, 96) hours after treatment for optical density.

The LT50 values varied significantly among different concentrations, according to this study the 96 h LT50 of karate on *S. quadricauda* was (17.78) mg/l and 72 h, 24 h LT50 were (22.28) and (38.48) mg/l respectively.

LT50 values are useful to more exactly determine the range of pesticide concentrations that cause growth inhibition in an algal population (Anton et al., 1993).

The LT50 values (fig. 5-7) from this study are similar to those reported for other algal species (Solomon et al., 1996).

The differential sensitivity to toxins among freshwater algae could have serious impacts on community structure and seasonal successional patterns (Hersh and Crumpton, 1987).
Figure (1): Total cell number of *S. quadricauda* at exposure to different concentrations from insecticide karate.

Figure (2): Optical Density of *S. quadricauda* after exposure to insecticide karate.
Figure (3): Growth rate of *S. quadricauda* at exposure to different concentrations from insecticide karate.

Figure (4): Inhibition rate (%) of *S. quadricauda* at exposure to different concentrations from insecticide karate.
Figure 5: Line of toxicity on exposure *S. quadricauda* to insecticide karate in concentration (0.5) mg/l and LT50 value

\[ y = 1.5798x + 2.665 \]
\[ R^2 = 0.9648 \]

Figure 6: Line of toxicity on exposure *S. quadricauda* to insecticide karate in concentration (1) mg/l and LT50 value

\[ y = 1.7336x + 2.7644 \]
\[ R^2 = 0.9957 \]

Figure 7: Line of toxicity on exposure *S. quadricauda* to insecticide karate in concentration (3) mg/l and LT50 value

\[ y = 1.7881x + 2.8088 \]
\[ R^2 = 0.9997 \]
References:


دراسة السمية الحادة للمبيد البايرثرويدي كراتي على طحلب المياه العذبة Scenedesmus quadricauda (Turb.) Bersb

جاسم محمد سلمان              ميسون مهدي صالح
قسم علوم الحياة- كلية العلوم- جامعة بابل

الخلاصة:
تناول البحث الحالي دراسة السمية قصيرة الأمد للمبيد الحشري كراتي من خلال استخدام الطحلب الأخضر Scenedesmus quadricauda ككائن اختبار من خلال فترات تعرض (24, 72, 96) ساعة في ظروف مختبرية مسيطرة على ماء نهر جلبت من نهر الحلة بعد إمضاها خلال ورق ترشيح (0.45 ميكرومتر) في ظروف التخلص من الطحالب والأحياء المجهرية التي تحتل وجودها فيها. استخدمت ثلاث تركيزات من المبيد هي (0.5، 1، 3) ملغ/لتر وبثلاث مكررات لكل تركيز وسجلت النتائج لكل 24 ساعة من بداية التجربة. تضمنت الدراسة قياس الامتصاصية كمؤشر لكثافة الطحلب وسمت عدد الخلايا ومعدل النمو ورسبة التبيط وقيمة الزمن القاتل.

تبين إن التأثير يزداد بزيادة تركيز المبيد المستخدم وظهر إن عدد الخلايا ومعمل النمو يقل بزيادة فترة التعرض وزيادة التركيز المستخدم بينما كانت نسبة التثبيط تزداد بزيادة فترة التعرض والتركيز. وكانت أعلى نسبة تثبيط هي (91.4%) في التركيز 3 ملغ/لتر بعد فترة تعرض (96) ساعة وأقل قيمة للزمن نصف القاتل كانت (17.87) ملغ/لتر أيضاً.  

بينت نتائج الدراسة إن تأثير المبيد على معايير النمو والكثافة في الطحلب تحت الدراسة يختلف تبعاً للتركيزات التي يتعرض لها وفترة التعرض.