Application of Decision Tree as a Data Mining Tool in a health care

Dr. ZAKI .S. TOWFIK Sabiha Fathil Jawad
Department of Computer Science Department of Computer Science
Collage of Science Collage of science
University of AI-Mustansiriya – Iraq University of AI-Mustansiriya - Iraq
E-mail-sabiga_fj@yahoo.com zekisaeed@gmail.com

Abstract:

This work demonstrates the application of decision tree, as data mining tool, in the health care system. Data mining has the capability for classification, prediction, estimation, and pattern recognition by using health databases. Databases of health systems contain significant information for decision making. It could be properly revealed with the application of appropriate data mining techniques. Decision trees are employed for identifying valuable information in health databases. In this paper Decision tree as a data mining tools is used for predication the spread types of disease of hepatitis virus in reigns that high affect to people with different temperature and prevention of this disease by using rules that needed to predicate the diseases.

Keyword: Decision Tree Modeling, Healthcare Data Mining Applications, Decision Rule Induction.

1. Introduction

Data mining can be defined as the process of finding previously unknown patterns and trends in databases and using that information to build predictive models. Alternatively, it can be defined as the process of data selection and exploration and building models using vast data stores to uncover previously unknown patterns. Data mining is not new—it has been used intensively and extensively by financial institutions, for credit scoring and fraud detection; marketers, for direct marketing and cross-selling or up-selling; retailers, for market segmentation and store layout; and manufacturers, for quality control and maintenance scheduling.

In healthcare, data mining is becoming increasingly popular, if not increasingly essential. Several factors have motivated the use of data mining applications in healthcare. The
existence of medical insurance fraud and abuse, for example, has led many healthcare insurers to attempt to reduce their losses by using data mining tools to help them find and track offenders. Fraud detection using data mining applications is prevalent in the commercial world, for example, in the detection of fraudulent credit card transactions. Recently, there have been reports of successful data mining applications in healthcare fraud and abuse detection. Another factor is that the huge amounts of data generated by healthcare transactions are too complex and voluminous to be processed and analyzed by traditional methods. Data mining can improve decision-making by discovering patterns and trends in large amounts of complex data.

Such analysis has become increasingly essential as financial pressures have heightened the need for healthcare organizations to make decisions based on the analysis of clinical and financial data. Insights gained from data mining can influence cost, revenue, and operating efficiency while maintaining a high level of care.

Healthcare organizations that perform data mining are better positioned to meet their long-term needs, Benko gives an illustration of a healthcare data mining application; and finally, highlighting the limitations of data mining and offering some future directions.

Methods for classification and regression that have been redeveloped in the fields of pattern recognition, statistics, and mac, these are of particular interest for data mining since they utilize symbolic and interpretable representations. Symbolic solutions can pro-vide a high degree of insight into the decision bound-arise that exist in the data, and the logic underlying them. This aspect makes these predictive mining techniques particularly attractive in commercial and healthcare data mining applications. We present here a synopsis of some major state-of-the-art tree and rule mining methodologies[1,2,3].

2. Healthcare Data Mining Applications

There is vast potential for data mining applications in. Generally, these can be grouped as the evaluation of treatment effectiveness; management of healthcare; customer relationship management; and detection of fraud and abuse. More specialized medical data mining, such as predictive medicine and analysis of DNA micro-arrays, lies outside the scope of this paper. Treatment effectiveness. Data mining applications can be developed to evaluate the effectiveness of medical treatments. By comparing and contrasting causes, symptoms, and courses of treatments, data mining can deliver an analysis of which courses of action prove effective. For example, the outcomes of patient groups treated with different drug regimens for the same disease or condition can be compared to...
J.

determine which treatments work best and are most cost-effective[2,4].

Along this line, United HealthCare has mined its treatment record data to explore ways to cut costs and deliver better medicine. It also has developed clinical profiles to give physicians information about their practice patterns and to compare these with those of other physicians and peer-reviewed industry standards. Similarly, data mining can help identify successful standardized treatments for specific diseases. In 1999, Florida Hospital launched the clinical best practices initiative with the goal of developing a standard path of care across all campuses, clinicians, and patient admissions[5].

Good account of data mining applications at Florida Hospital also can be found in Gillespie[7] and Veletsos [6]. Other data mining applications related to treatments include associating the various side-effects of treatment, collating common symptoms to aid diagnosis, determining the most effective drug compounds for treating sub populations that respond differently from the mainstream population to certain drugs, and determining proactive steps that can reduce the risk of affliction. Healthcare management. To aid healthcare management, data mining applications can be developed to better identify and track chronic disease states and high-risk patients, design appropriate interventions, and reduce the number of hospital admissions and claims. For example, to develop better diagnosis and treatment protocols, the Arkansas Data Network looks at readmission and resource utilization and compares its data with current scientific literature to determine the best treatment options, thus using evidence to support medical care. Also, the Group Health Cooperative stratifies its patient populations by demographic characteristics and medical conditions to determine which groups use the most resources, enabling it to develop programs to help educate these populations and prevent or manage their conditions.1 Group Health Cooperative has been involved in several data mining efforts to give better healthcare at lower costs. In the Seton Medical Center, data mining is used to decrease patient length-of-stay, avoid clinical complications, develop best practices, improve patient outcomes, and provide information to physicians—all to maintain and improve the quality of healthcare[6,7].

Data mining can be used to analyze massive volume of data and statistics to search for patterns that might indicate an attack by bio-terror that effect to the people and in which reigns with different temperature to prevention from disease. [8]

3. Decision Tree Modeling

Decision trees are generated from training data(see table 1) in a top-down for specific direction. The initial state of a decision tree is the root node the is assigned to the outlook. The node is split to three classes which are North
Iraq, Middle Iraq and South Iraq. The process is recursively shared with viral hepatitis in the spit to types of viral hepatitis which are type A, type B and type C. These classes are called leaf nodes.

4. Implementation

There is strong correlation between the data obtained from the Iraqi Health Ministry, for example, that people infected with hepatitis virus differ archive a to prepare them in the table No. 1 in the three types of the disease as there is a relationship between the spread of the virus and the different between temperature and prevention of this disease. In Table (1) show the incidence of the disease varies from one region to the other, where the liver infection in the northern region than other regions, as evident in the incidence of the disease in areas with high population density, as is evident in the maps of Iraq where the numbers of liver

<table>
<thead>
<tr>
<th>Outlook</th>
<th>City</th>
<th>Viral Hepatitis Type A</th>
<th>Dangerous Class 1</th>
<th>Viral Hepatitis Type B</th>
<th>Dangerous Class 2</th>
<th>Viral Hepatitis Type C</th>
<th>Dangerous Class 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Iraq</td>
<td>Dahuk</td>
<td>0</td>
<td>less</td>
<td>37</td>
<td>middle</td>
<td>436</td>
<td>large</td>
</tr>
<tr>
<td>North Iraq</td>
<td>Arbil</td>
<td>0</td>
<td>less</td>
<td>1</td>
<td>middle</td>
<td>231</td>
<td>large</td>
</tr>
<tr>
<td>North Iraq</td>
<td>Mousal</td>
<td>451</td>
<td>less</td>
<td>229</td>
<td>middle</td>
<td>288</td>
<td>large</td>
</tr>
<tr>
<td>North Iraq</td>
<td>Karkok</td>
<td>0</td>
<td>less</td>
<td>294</td>
<td>middle</td>
<td>1097</td>
<td>large</td>
</tr>
<tr>
<td>North Iraq</td>
<td>Sulaymaniyah</td>
<td>0</td>
<td>less</td>
<td>0</td>
<td>middle</td>
<td>0</td>
<td>large</td>
</tr>
<tr>
<td>Middle Iraq</td>
<td>Salahedin</td>
<td>162</td>
<td>less</td>
<td>195</td>
<td>middle</td>
<td>391</td>
<td>large</td>
</tr>
<tr>
<td>Middle Iraq</td>
<td>Diala</td>
<td>365</td>
<td>less</td>
<td>65</td>
<td>middle</td>
<td>398</td>
<td>large</td>
</tr>
<tr>
<td>Middle Baghdad</td>
<td>513</td>
<td>less</td>
<td>1407</td>
<td>middle</td>
<td>3824</td>
<td>large</td>
<td>105</td>
</tr>
<tr>
<td>Iraq</td>
<td>Anbar</td>
<td>less</td>
<td>111</td>
<td>middle</td>
<td>402</td>
<td>large</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Middle Iraq</td>
<td>Karbala</td>
<td>629</td>
<td>less</td>
<td>88</td>
<td>middle</td>
<td>783</td>
<td>large</td>
</tr>
<tr>
<td>Middle Iraq</td>
<td>Babil</td>
<td>0</td>
<td>less</td>
<td>315</td>
<td>middle</td>
<td>1542</td>
<td>large</td>
</tr>
<tr>
<td>Middle Iraq</td>
<td>Wasit</td>
<td>463</td>
<td>less</td>
<td>134</td>
<td>middle</td>
<td>397</td>
<td>large</td>
</tr>
<tr>
<td>South Iraq</td>
<td>Qadisyah</td>
<td>186</td>
<td>less</td>
<td>79</td>
<td>middle</td>
<td>262</td>
<td>large</td>
</tr>
<tr>
<td>South Iraq</td>
<td>Missan</td>
<td>313</td>
<td>less</td>
<td>54</td>
<td>middle</td>
<td>363</td>
<td>large</td>
</tr>
<tr>
<td>Middle Iraq</td>
<td>Najf</td>
<td>0</td>
<td>less</td>
<td>207</td>
<td>middle</td>
<td>843</td>
<td>large</td>
</tr>
<tr>
<td>South Iraq</td>
<td>Thiqar</td>
<td>0</td>
<td>less</td>
<td>95</td>
<td>middle</td>
<td>304</td>
<td>large</td>
</tr>
<tr>
<td>South Iraq</td>
<td>Mutanna</td>
<td>80</td>
<td>less</td>
<td>27</td>
<td>middle</td>
<td>1043</td>
<td>large</td>
</tr>
<tr>
<td>South Iraq</td>
<td>Basra</td>
<td>0</td>
<td>less</td>
<td>252</td>
<td>middle</td>
<td>1314</td>
<td>large</td>
</tr>
</tbody>
</table>
5. **Decision Rule Induction**

Decision rules, in disjunctive normal form (DNF), may be induced from training data in a bottom-up specific-to-general style, or in a top-down general-to-specific style, as in decision tree building. This section will highlight methodologies dealing with bottom-up specific-to-general approaches to rule induction. The initial state of a decision rule solution is indeed the collection of all individual instances or examples in a training data set, each of which may be thought of as a highly specialized decision rule. Most decision rule modeling systems employ a search process to evolve this set of highly specific and individual instances to more general rules. This search process is iterative, and usually terminates when rules can no longer be generalized, or some other alternate stopping criteria satisfied. As in the case of decision tree building, noise in the data may lead to over fitted decision rules, and various pruning mechanisms have been developed to deal with over fitted decision rule solutions.

In figure (1) the tree have three leaf nodes. In decision tree, each leaf node represent a rule then have the
following rule corresponding to the tree give.

Rule induction methods attempt to find a compact "covering" rule set that completely partitions the examples into their correct classes. The covering set is found by heuristically searching for a single 'best' rule that covers cases for only one class. Having found a 'best' conjunctive rule for a class C, the rule is added to the rule set, and the cases satisfying it are removed from further consideration. The process is repeated until no cases remain to be covered.

RULE1 if it is North Iraq and type of hepatitis virus is A then Dangerous Is less

RULE2 if it is North Iraq and type of hepatitis virus is B then Dangerous Is middle Dangerous.

RULE3 if it is North Iraq and type of hepatitis virus is C then Dangerous Is large

RULE4 if it is Middle Iraq and type of hepatitis virus is A then Dangerous Is less.

RULE5 if it is Middle Iraq and type of hepatitis virus is B then Dangerous Is Middle.

RULE6 if it is Middle Iraq and type of hepatitis virus is C then Dangerous Is large.

RULE7 if it is South Iraq and type of hepatitis virus is A then Dangerous Is less.

RULE8 if it is South Iraq and type of hepatitis virus is B then Dangerous Is Middle.

RULE9 if it is South Iraq and type of hepatitis virus is C then Dangerous Is large.

6. Result

From implementation of data mining Decision tree to the training set data it appear that.

1. Design Decision tree from dataset from table 1.
2. Design rules to predict the diseases and reigns.
3. The decision tree appears spread of disease and high population density.
4. The decision tree appear the types of disease and which high effect to the peoples.

7. Conclusion

The rise in attention and focus on decision support solutions using data mining techniques has refueled a big interest in classification, particularly symbolic techniques. This paper has attempted to provide the reader with the key issues of decision tree and decision rule modeling techniques. There is strong data as training data se obtained from the Iraq health Ministry. Data mining was success to solve the
problem of effect hepatitis virus archive. Applied the concepts decision tree to real data and gained a working knowledge of data mining techniques. The rules in this design can predict the which type of diseases the effect on the peoples and high affected also can appear the reigns the hepatitis virus spread. Therefore fundamental concepts of extracting knowledge from data should be a goal for discovering important information.

References

[4]. Cios, K.J. & Moore, G.W., "Uniqueness of medical data mining". Artificial Intelligence in Medicine, 26(1), 1-24, 2002

[6]. Paddison, N., "Index predicts individual service use", Health Management Technology, 21(2), 14-17, 2000

[7]. Schuerenberg, B.K., "An information excavation". Health Data Management, 11(6), 80-82, 2003