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Abstract

We study the recently introduced notion of input-output stability, which is a robust variant
of the minimum phase property for general smooth nonlinear control descriptor systems. This paper
develops the theory of input-output stability in the single-input, single-output setting. We knew that
if a descriptor system has a uniform M vector relative degree and is detectable through the output
and its derivatives up to some order, uniformly over all inputs that produce a given output, then it is
input-output stable. In this paper we show that the converse is also true, thus arriving at a useful
equivalent characterization of input-output stability. In this paper, exact linearization via state
feedback and stabilization for affine descriptor systems are considered. Using a local
diffeomorphism and a state feedback, the affine descriptor system is transformed to a linear normal
form system. Choosing a appropriate feedback controller, the closed-loop system is asymptotically

stabilized.

Index terms: descriptor control systems, uniform M vector relative degree, input-output stability,

exact linearization

1. Introduction It is well-established that the DAE
Descriptor  systems (also called (differential algebraic equation) systems may
singular systems or generalized state-space have fundamentally different characteristics
systems) have attracted much attention in from the ordinary differential equation (ODE)
recent years, because of their ability to capture system (L. R. Petzold,1982). A concept that is
the dynamical behaviour of many natural commonly used to provide a measure of the
phenomena (S. kawaji and E. Z. Taha,1994). differences between DAE and ODE systems is
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that of the (differential) index (A. Kumar, P.
Daoutidis, 1999). Loosely speaking, the index
of DAE system is the minimum number of
differentiations required to obtain an
equivalent ODE system. DAE systems with
index more than one are referred to as high-
index systems.

The zero dynamics of a control system are
the dynamics describing the “internal”
behavior of the system when input and initial
conditions have been chosen in such a way as
to constrain the output to remain identically
zero. Some research on the zero dynamics of
nonlinear control systems has been proceeded.
The relationship between the zero dynamics
of the system and the stability of the system
has been found; The problems of reproducing
the reference output have also been
considered with the aid of the zero dynamics
of the system (A. Isidori, 1995). Those results
show that the zero dynamics of a system is an
important property of the system. The concept
of the zero dynamics studies special class of
control systems (systems that are affine in
control ), therefore; many studies for the
stability of the systems that nonlinear in
general as input-output stability in (Hassan K.
Khalil,

output stability in (M. Vidyasagar, 1993)

1996), and M. Vidyasagar input-

studied the relation between the input and the
output of the systems. The notion of input-
output-to-state stability was studied in ( M.
Krichman and E. D. Sontag, 1998) and (M.
Krichman, E. D. Sontag, and Y. Wang, 2001).

The new definition of input-output stability
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such a concept was proposed in the recent
paper (D. Liberzon. A. S. Morse, and E. D.
Sontag, 2002). Its definition requires the state
and the input of the system to be bound by a
suitable function of the output and derivatives
of the output, modulo a decaying term
depending on initial conditions. Input-output
stability can be investigated with the help of
the tools that have been developed over the
years to study ISS (input-to-state stability),
OSS (output-to-state stability), and related
notions which introduced in (E. D. Sontag,
1989) and (E. D. Sontag and Y. Wang, 1997).
In (D. Liberzon, 2004) and (Daniel Liberzon,
2005) Liberzon is continuing to study the
input-output stability property for multi-input,
(MIMO) Liberzon

multi-output systems.

shows the relevance of the nonlinear structure

algorithm in  establishing input-output
stability.
For nonlinear descriptor control

systems that are affine in controls, a major
contribution of J. Wang, C. Chen (J. Wang
and C. Chen, 2004), (J. Wang and C. Chen,
2001), (J. Su, C. Chen, 2004), and (G.H.Xu,
C.Chen, J. Wang , and D.D.Li, 2004) was to
use the ideas of differential geometric control
theory to define M derivative and M bracket in
order to study the index one nonlinear
descriptor control systems and proposed a
systematic  state feedback linearization
strategy to produce stabilization and adaptive
stabilization control laws. They define the
minimum-phase property in terms of the

concept of zero dynamics. The zero dynamics
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are the internal dynamics of the descriptor
system under the action of an input that holds
the output constantly at zero. The descriptor
system is called minimum-phase if the zero
dynamics are (globally) asymptotically stable.
In the SISO case, a unique input capable of
producing the zero output is guaranteed to
exist if the descriptor system has M relative
degree, which is now defined to be the
number of times one has to differentiate the
output until the input appears (J. Wang and C.
Chen, 2001). Extensions to MIMO systems
are discussed in (J. Wang and C. Chen, 2004)
and (J. Su, C. Chen, 2004). In ( Wasen 1.
khalil, 2009 ) we introduced the notion of
input-output stability for nonlinear control
descriptor systems in general form. In view of
the need to work with the zero dynamics, the
definition of a minimum-phase nonlinear
descriptor control system prompts one to look
for a change of coordinates that transforms the
descriptor system into a certain normal form.
It has also been recognized that just
asymptotic stability of the zero dynamics is
sometimes insufficient for control design
purposes, so that additional requirements need
to be placed on the internal dynamics of the
descriptor system.

The relative degree of a continuous
time linear  single-input—single-output
(SISO), which equals the difference between
the degrees of the denominator and the
numerator of the transfer function. Namely, if

a linear system of relative degree r is

minimum-phase, then the “inverse” system,
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driven by the r" derivative of the output of
the original system, is stable (A. Isidori,
1989). For affine control in the SISO case, a
unique input capable of producing the zero
output is guaranteed to exist if the system has
a relative degree, which is defined to be the
number of times one has to differentiate the
output until the input appears. For control
systems nonlinear in general form, in (D.
Liberzon. A. S. Morse, and E. D. Sontag,
2002) they define uniform relative degree.
The above concept of relative degree is
generalization to index one descriptor control
system that affine in controls (J. Wang and C.
Chen, 2004). For general nonlinear descriptor
control systems we define the uniform M
vector relative degree to index one by using
the generalization of M derivative and M
bracket in ( Wasen I. khalil, 2009). It follows
from our definition that if a system has a
uniform M relative degree (in an appropriate
sense) and is detectable through the output
and its derivatives up to some order,
uniformly over all inputs that produce a given
output, then it is input-output stable.

In this paper is a continuation of the
work reported in ( Wasen I. khalil, 2009 ).
For SISO descriptor systems that are real
analytic in controls, we will show that the
converse is also true, thus arriving at a useful
equivalent characterization of input-output
this

stability (Theorem 1). By using

characterization we arrive to exact
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linearization for affine descriptor control
systems.
Before providing  necessary
definitions in sec. 2 arriving at a useful
equivalent characterization of input-output
stability in sec. 3, we prove and discuss our
main result for affine descriptor systems in

sec. 4. Brief conclusions in sec. 5.

2. Background

Consider the descriptor system
x=f(x,z,u)
0=0,(X,2) Vi=1l..m
y =h(x,2)
(1) where the dynamic state xeR", the
algebraic state zeR", the input Ue R, and
the output yeR. Whenever possible and
convenient, these equations will be rewritten

in the more condensed form

y(i)(t) = Hi(X(t),Z(t),U(t),...,U(i_l) (t)) > I =

the functions H, : R"" xR"” — R' are defined recursively via

where for i=0,1,...
and
H, (X, 2,U,..,ul ™) = Mf(xzu)H.ﬁZaH” e

a €))

where the arguments of H, are (u,u,...,

We willlet [ -

X = f(x,z,u)
0=0(x,2)
y =h(x,2)

where o(X,2) = (0,(X,2),...,0,(%,2)" . We

assume that f,o, and h are all smooth

mapping, and the Jacobian matrix of o(X,2)

with respect to z is nonsingular at all xe R"

and zeR™, we restrict admissible input (or
“control”) signals to be at least continuous,
and for every initial condition (X(0),z(0))
and every input u(.), there is a solution
(x(.),z(.)) of (1) defined on a maximal

interval [0,T_ ) and the corresponding

output y(.). We write C* for the space of k
times continuously differentiable functions
u:[0,00) - R’ , where k is some nonnegative

integer. Whenever the input U is in C*, the

(k+1)

derivatives Y, V,...,¥ exist and are

continuous; they are given by

L..,k+1, te[0,T

max )

H, =h(x,2)

u)yeR and (x,z) e R™".

denote the supremum norm of a signal restricted to an interval [a, b] 1.e

HZ”[a,b] ‘= sup {|Z(S)| ra<s<b},

where | . | is the standard Euclidean norm.
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According to definition 2 of ( Wasen L.
Khalil, 2009 ), the system (1) is called input-
output stable if there exist a positive integer

N, a classKL function' 4 , and a classK_

function y such that for every initial state

(x(0),z(0)) and every N-1 times
continuously differentiable input U the
inequality

u(t)

x| <p o @

2(0) (0]

2(t)

holds for all t in the domain of the
corresponding  solution of (1), where

YN =Y Yo YT

belongs to CM'

. (The assumption that u
is made to guarantee that
y™ is well defined, and can be weakened if
the function H is independent of u™™").

It is perhaps best to interpret input-
output stability as a combination of three
separate properties of the descriptor control
system. The first property is that if the output
and its derivatives are small, then the dynamic
This

state becomes small.

property is
expressed by the following inequality

|xﬁﬂ£/ﬂ{ «»J (v

3)

! Recall that a function a:[O,OO)—> [0,00) is said to be of
class K ifit is continuous, strictly increasing, and «(0)=0.
If it is unbounded, then it is said to be of class K_. A
function 3 :[0,00)x[0,00)— [0,0) is said to be of class KL
if B(,t) is of class K for each fixed t>0 and §(s,t)

decreases to 0 as t — 0 for each fixed $>0.
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The second property is that if the output and
its derivatives are small, then the algebraic

state becomes small. This property is

expressed by the following inequality

o< s Olosr] ) @
2(0) )| [0.]

The results of (M. Krichman, E. D. Sontag,

and Y. Wang, 2001) imply that the

inequalities (3) and (4) hold with k if there

exists a smooth, positive definite, radially

unbounded function V :R"™ —> R that
satisfies
YV (%, 2)Ff (X, 2,U) < a([ ])+;{(HY H) (5)
In
where F(Xx,2)= oo, 9o | for all
- (=)
0z ax

(X,2) e R"™, ueRP for some functions
a,y € K, . The inequality (5) is equivalent

to weak uniform 0-detectability of order N for

equivalent control system

X
[Zj =F(x,2)f(x,z,u) according to [22] (is
equivalent to holding the following inequality
X(t) x(0)
<pBi(
z(t) 2(0)

class KL function g , and a class K function

D+rgv,,)  ©

7).

The third property is that if the output
and its derivatives are small, then the input
becomes small. This ingredient of the input-
output stability property is described by the

following inequality
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D+ (7)

x(0)
a2

Which says that the input should become

small if the output and its derivative are small.
Loosely speaking, this suggests that the
system has a stable left inverse in the input-
output sense. Unlike uniform detectability,
this property does not seen to admit a
Lyapunove-like characterization. In the SISO
case it is closely related to the existence of a
M uniform relative degree see (J. Wang and
C. Chen, 2004), (J. Wang and C. Chen, 2001),
(J. Su, C. Chen, 2004), and (G.H.Xu, C.Chen,
J. Wang , and D.D.Li, 2004). In general,
however, this third property needs be
understood better, which is precisely the goal
of the present paper. In the next section we
formulate and study a useful result which
implies that input-output stability is
equivalent to the existence of a uniform M

relative degree for SISO systems.

3. uniform M relative degree

Consider a general descriptor system (1).
We recall from ( Wasen 1. khalil , 2009) that a
positive integer r is the uniform M relative
degree of descriptor system (1) if the
following two conditions hold:

1- for each k<r, the function H, is

independent of u,u,...u* ™ ;
2- there exist two class K_ functions p, and

p, such that

80

)+ o, (H (%, 2,u))  (8) for

Jul< pi(

§

all xeR",zeR™ and all ueR.

The theorem (1) in ( Wasen 1. khalil , 2009)
implies that for descriptor systems with
uniform M relative degree, input-output
stability is equivalent to weak uniform O-
detectability of order k for some k < N , in the
following we explain that for descriptor
systems satisfying the additional assumptions
on f and h stated in the following theorem,
input-output stability is equivalent to the
existence of a uniform M relative degree
r<N plus weak uniform 0-detectability of
order k for some k <N .
Theorem 1:

Suppose that the descriptor system (1)
function

is input-output stable, that the

f(x,z,.) is real analytic in U for each fixed
(x,z), and f(0,0,0)=0 , h(0,0)=0. Then
(1) has uniform M relative degree r <N .
Proof: Since the descriptor system (1)
is input-output stable, we know in particular
that for some positive integer N and for some
class KL function £ and class K_ function

y the inequality (7) holds along solution of

(1) for all smooth inputs. The function H,

cannot be independent of u,u,....u*™" for all

k=1,.,N-1. Otherwise, letting
(x(0), 2(0)) =(0,0) and applying an arbitrary

constant input U , we would deduce from (7)
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that |u| <c:= 7/(|H0(0,0);...;

a

contradiction. Thus, the integer

r=max{k<N:H, is independent of

Uy, UK 41 )
is well defined. Condition 1 of Proposition (3)
in (D. Liberzon. A. S. Morse, and E. D.
Sontag, 2002) holds with this r

For every input U we have

y=H,(X,2)
y(r_l) =H r—1(Xa Z)
oH oH Ooo._, Oo
(r) — r-1 r-1 (¥ N1 YV f X,Z,U
y ( OX 0z (az) ax) ( )

=M f(x,z,U)H o =H (X, z,u)

oH, oH, Jo
(r+) _ r -
y ( ox oz )
H
y(r+2) ::C;2 (X, Z,U,U) 0 [

Gi(X,.2,.U,(0)....u{ " (0))

(XJ> ]’uj(o))

ul(0)=-

In view of (10), we will then have
y(O) H (Xjﬁ ]) Dy(r 1)(0) Hr I(X]’ ])
YOO =[H, (x;.2;.w)| <K,

YO (0)=...=y™(0)=0

oH,
yV =G,_ (%2U,.,u™"" ) +—Lu™" 10)

The following fact will be useful.
Lemma 1. If (7) holds and I is
defined by (9), then there cannot exist a

bounded sequence {x;,z;} in R"", a

sequence {w;} in R with lim

joo

wj| =ce
and a positive constant K such that for all ]

we have ‘H (x;,2;,

Wj)‘< K and

i J,Wj);tO .

Proof: Suppose that there exist

sequences {X;,Z;} and {w;} and a positive

I
constant K with the properties indicated in
the statement of the lemma. Fix an arbitrary

positive integer j. Consider the initial state
(x(0),2(0))=(X;,z;), and pick a smooth
(e.g., polynomial) input function u;(.) with

u;(0)=w; whose derivatives at t=0 are

specified recursively by the equations

Ji=L.,N-r. (11)

Therefore, if such an input u; is applied and if ¢ is an arbitrary fixed positive number, then there

exists a sufficiently small time T, such that for all t€[0,T,] the following inequalities hold:
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(x(t), 20| <|(x;. )| + &

[y O] <[H L (x

YOl <|H (x;,2)]+2 5 ...

)‘+g ‘y(”(t)‘<K+g

J’J

Y l<e . [yM )<

Repeating this construction for all j , we
obtain a sequence of trajectories of (1) along

which are

uniformly bounded for small t, whereas

‘u j (t)‘ is unbounded for small t and large j.
We arrive at a contradiction with (7), and the
proof of the lemma is complete.

Let us denote by © the set of all
(X,2) e R""such that H, (X, z,.) is a constant
function. The set ® is closed [because if for a

sequence {X;,Z;} converging to some (X, Z)

H
we have (8_)()( u)=0 for all u and all

i*%ie

].

Lemma 2. Suppose that f(x,z,) is
real analytic in U for each fixed (x,z), that
(7) holds, and that I is defined by (9). If

(X,z) € R™™ is such that for some K >0 we
have ‘H ,(;, E,u)‘ <K forall U, then (;, E) is

in the interior of © .

Proof: Take an arbitrary sequence

v} in ® with lim;  |v)|=c. By

joo
hypothesis, ‘Hr(;,z,v j)‘ <K for all j. By

continuity, for each ] there exist a

neighborhood B J.(},E) of (x,z) in R™™ and
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number 0. such  that

a  positive i
IH,(x,z,u)| <K for all (x,z)eB,;(x,z) and

all ue(v;-06;,v;+5;). Moreover, the

neighborhoods Bj()_(,E), Jj=12,... can be

chosen to be nested, i.e., B, (;,E) cB j(i,E)
whenever 1> J, and the sequence {J;}can
be chosen to be nonincreasing. Now, suppose

that (;,E) is not in the interior of ®. Fix an

arbitrary j. We have B j(i,E) « ©. Take an

arbitrary  (X;,Z;) € B; (X, Z%

.) cannot be identically zero on

Then

i’ J’

the interval (v;-6;,v;+0J;), by virtue of

real analyticity of H (X .) which follows

I J’

from that of f(x.,z:,.). Thus, we can find a

Ty

wW; €(V; —J,;,V; +J;) such that
( H, )(XJ, ;»W;)# 0 . This construction can
be carried out for all j. Since

B (x,2)c B j(;,E) when 1> ], the points
(X;,Z;), j=12,... can be chosen in such a
way that ‘(x i J)‘ is uniformly bounded for
all J. Moreover, we have
‘Wj‘z‘vj‘—‘5j‘2‘vj‘—|5l|—>oo as j—oo .In

view of lemma (1), we arrive at
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a contradiction with (7), which proves the
lemma.

Corollary 1. Suppose that f(x,z,.) is
real analytic in U for each fixed (x,z) . If (7)
holds and I is defined by (9), then the set ®
1s open.

Proof: By definition of ® , every
(;,E) € ® satisfies the condition in the
statement of lemma 2 , hence it lies in the
interior of ®. m

Corollary 2. Suppose that f(x,z,.)
is real analytic in ufor each fixed (x,z). If
(7) holds and r is defined by (9), then the set
O is empty.

Proof: We know that® is closed. We
also know that ® is open (Corollary 1).
Moreover © = R"™" | by virtue of (9). Being a
closed and open proper subset of R™™, the
set must be empty.

Our goal is to show that Conditions 2
and 3 of proposition (3) in (D. Liberzon. A.
S. Morse, and E. D. Sontag, 2002) hold,
which would imply that r is the relative
degree of (1).We break this into two separate
statements.

Lemma 3. Suppose that f(x,z,.) is
real analytic in U for each fixed (x,z). If (7)
holds and r is defined by (9), then for each
compact set y < R™" and each positive
such

constant K there exists a number M

that [H, (x,z,u)| > K whenever (x,z) € 7 and

u=Mm.
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Proof: Suppose that, contrary to the

statement of the lemma, there exist a compact

subset y < R™", a positive constant K, a

sequence {X,Z

i»Z;} In y,and asequence {V,;}

in R with lim ‘Vj‘zoo such that

jow
‘Hr(xj,zj,vj)‘ <K for all j. By continuity,

we can find a nonincreasing sequence of

positive  numbers {0;} such  that

H (x;.z;,w|<K for all j and all

ue(v;-56,,v;+d;). Fix an arbitrary j.

Since ©® is empty by corollary (2) and

H,(x;,z

i5Zjs) is real analytic,

oH.
E(Xj 9Zj 7')

cannot vanish identically on the interval

(v; =6;,v;+6;). Thus, we can find a

w; e(v;=6;,v;+9;) such that
oH, ) .

(X;,Z;,w;) # 0. Repeat this construction
ou

forall j .lemma (1) applies again, yielding a
contradiction with (7), and the proof of the
lemma is complete.
m

Lemma 4. Suppose that f(x,z,.) is
real analytic in U for each fixed (X,z) and
that we have f(0,0,0)=0 and h(0,0)=0 . If
(7) holds and r 1is defined by (9), then
H,(0,0,u) #0forall u=0 .

Proof: Suppose that H,(0,0,u)=0

for some U # 0. We know from corollary (2)

that the set ® is empty. Thus, by real
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H :
£(0,0,.) cannot vanish

analyticity p
u

identically on any open neighborhood of u .

This implies that there exists a sequence {v,}

. — H
converging to U such that 88 ~(0,0,v;) =0
u
. .. OH - . =
V) [if ~(0,0,u) =0, simply let v, =u].

ou

Choose an arbitrary | . Take the initial state to
be (x(0),z(0))=0 . Pick a smooth (e.g.,

polynomial) input function u;(.) such that
u;(0)=v; and (11) holds with 0 in place of

(X;,2;) . From (10), we immediately see that

y ) =...=y™(0)=0. Since h(0,0)=0,
we have y(0)=0. We also know that
f(0,00)0=0 , which implies that
H,0)=---=H,,(0)=0. It follows that
y(0)=--=y"P(0)=0 . We conclude that

if the input u; is applied, then for every
¢ >0 there exists a sufficiently small time T,
such that for all te[0,T;] the following
inequalities hold:

(xt),zt)<e  |yt)<e,...,

y(h (t)\ <g

\y“) (t)\ <|H,0.0,v))|+e&

Y l<e L lyV)<e
Carrying out the above construction for all |

and noting that
lim,,, H,(0,0,v,)=H, (0,0,u)=0 , we see
that y(t), y(t),...,y™ (t) become arbitrarily

small for small t as J—> o . On the other

84

hand, u;(0) >u=0, so U;(t) is bounded
away from 0 for small t and large j. Thisisa

contradiction with (7), which proves the
lemma. ]
We have shown that the integer I' defined by
(9) satisfies all three conditions of proposition
(3) in (D. Liberzon. A. S. Morse, and E. D.
Sontag, 2002), thus r is the relative degree of
the system (1). This proves Theorem 1.
m

As an illustration, consider the affine
descriptor systems in the following form

x=1(x,2)+9(x,2)u

0=0(X,2)
y=h(x,z) (12)
with  (0,0)=0. Its right-hand side is

obviously real analytic in U. Reconstructing

the above proof for this case, we find that I is

the smallest integer for which M ;M 'h(x,2)

is not identically zero on R™", and

@={(x2):M,M["h(x,2)=0}. If the

descriptor systems is input-output stable, then
corollary (2) implies that ® must be empty,
which means that I' is the uniform M relative
degree (see lemma 1 in (Wasen 1. khalil ,

2009)). Since the hypothesis h(0,0)=0 is

only used in lemma (4), it is not needed in this

casec.

4. Exact Linearization for Affine

Descriptor Control System
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We will now establish an important
feature of theorem (1), namely, that for SISO
reduces  exact

feedback

descriptor ~ systems it

linearization via  state and
stabilization for affine descriptor control
systems are considered. Using a local
differemorphism and a state feedback, the
affine descriptor system is transformed to a
linear normal system. Choosing a appropriate
feedback controller, the closed-loop system is
asymptotically stabilization.

We are now ready to state and prove a
characterization of input-output stability for
affine descriptor systems.

Theorem 2: Suppose that the affine
descriptor  (12) is stable,

f(0,0)=0, h(0,0)=0, and the dimension of

input-output
dynamic state

n=max{k < N :H, isindependetof u,u,...u* "} +1

Then the nonlinear transformation

¢)-{es
_|= = D(X,2)
z o(X,2)

is a differomrphism, where

H,(X,2)

R L

(13)

H,,(X,2)

Proof: It is only need to prove that the Jacobi

matrix
oD, 0D,
OX 0z
14
9o o .
OX 0z

(x,2)=(0,0)

85

of ®(X,z) a (0,0) is nonsingular. From
assumption that the Jacobin matrix of o(X, 2)
with respect to Z is nonsingular at all x € R"

and zeR", we can see the matrix (14) is

similar to
¥ 0D,
a62 (15)
0 go
82 (x,2)=(0,0)
where
o, 00
¥ =( 1__1(8_6)*16_0-
OX 0z 0z OX'| 100
From Implicit Function Theorem, the

algebraic equation 0=o0(X,z) determine a
unique smooth mapping p(x):R" > R"
defined on a neighborhood of the origin, such
that z=p(x). If we can get the analytic
expression of P(X), then substituting p(X)

into (12) results in

x=f(X)+g(x)u (16)
y=h(x)
where  f(x) = f(x, p(x)),T(X) = g(x, p(x)),

and h(x) =h(x, p(x)).

Let @, (X)=®, (X, p(x)). From (12) is real
analytic in U and theorem (1) in sec. 3 we can
see that (12) has uniform M relative degree n
this implies that (12) has M relative degree in
the sense of (J. Wang and C. Chen, 2004), (J.
Wang and C. Chen, 2001), (J. Su, C. Chen,
2004), (G.H.Xu, C.Chen,
D.D.Li, 2004) according to lemma 3.1 in
(Wasen I. khalil , 2009). From lemma (1) in

J. Wang , and
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(A. Isidori, 1995), we can see (16)  has the
relative degree n. From lemma (1.2) in (Z.

Jiandong and C. Zhaolin, 2002), it is easy to

see the matrix

is nonsingular. Via

D,
0
-0

simple computation, we can see that

od, ob, od, do._, 0o
b= () (17)
ox  OX 0z 0z OX|,_pn
Let x=0, then
oD,
6—(0) Y. (18)

From (15) and (17), we can see that (14) is a

nonsingular matrix , 1i.e., the nonlinear

transformation (13) is differomorphism.
m

Base on the above discussion, we give
the main result.
Theorem (3): If the affine descriptor (12) is
input-output stable, f(0,0)=0, h(0,0)=0,
and the dimension of dynamic state

n=max{k < N :H, isindependetof u,u,....u*"}+1

then the exact linearization of the affine
descriptor (12) can be realized via the local

diffeomorpism (13) and a state feedback.

Proof: let the i" component of the vector X

is X, ie., let X, =Mi'h(x,2), i=12,..n
Take derivative in both sides of the algebraic
equation, we get

160.

=—(—)" 19
( 0z ) OX (15)
Using (19) and theorem (2), we obtain
. oh_  oh,
X, =—X+—12
ox oz

86

=\ S

[oh oh oo
oX,

](f gu)

=M h(x,z)+ M h(x,z)u
=M h(x,2) =X,.
With the same way, we can get

X, =M{h(x,2) =X,

X, =M{?h(x,2) =X,

X, =M{'h(x,2) =X,

X, =M {h(x,2)+M M {"h(x,2)u

Let

a(x,2) =M¢h(x,z2),

B(x,2) =M M{"h(x,2),

a(x,2)=a(®(X,2)),

B(x,2)= B(®(X,2))

then

X, =a(X,2)+ (X, 2)u
=a(X,2)+ f(X,7)u

Via the differomorphism (13), the system (12)

is equivalently transformed into

0=2,
y=X
From assumption that the affine descriptor
(12) is input-output stable, f(0,0)=0,
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h(0,0)=0, and the dimension of dynamic

state

y =h(x,2) (23)

It is easy to see that the nonlinear

n =max {k < N :H, isindependent of u,u,...,u(k’l)} + [transformation (13) is a local differomorphism

3

and theorem (2) above , we know that
B(x,2)z0 and B(X,27)#0 in a
neighborhood of the origin. Take the state
feedback

| -
u :_E(Ya 7 [a(X,Z)+KX] (20)
then the closed-loop system is
0 1 0
X = 0 0 1 X, (21)
-k, -k, -k
0=12
y =[L0....,0]X,

where K =[k,,k,,....k, ,]. In the new

coordinates, the closed-loop system (21) is a

linear normal  state  space  system.
Appropriately choose K , such that
s"+k, s" +...+ks+k, is  Hulwize

polynominal, then the closed-loop system (21)
is asymptotically stable. The state feedback
(20) is expressed by the state (X,Z) of the

original system as

u=- ﬂ()l(’ ) [a(X,Z) + KD, (X,2)] (22)

Under the state feedback (22), the closed-loop

of the original system (12) is
1
P(X,7)

x=f(X,2)—g(X,2)

0=0(X,2)

[a(X,Z)+ KD, (X,2)]

between the system (23) and the system (21).
So the closed-loop system (23) s
asymptotically stable.

m

5. Conclusion

We provided characterization of input-
output stability in terms of suitably defined
notions of detectability and uniform M
relative degree, the latter of which was
proposed here and is of independent interest.
By wusing this characterization and state
feedback, the nonlinear descriptor control
system is transformed to a linear state space
system. Choosing a appropriate feedback
controller, the closed- loop system is

asymptotically stabilized.
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