On Additive Mapping with Period 3 on Rings and Near-Rings

Shaima'a B. Yass
shai.bader@yahoo.com
Al - Iraqia University

Abstract

In this research we introduced the definition of a map with period 3 on a ring R and on right (left) ideal \bar{I} of R, then we prove that, when R is a prime ring with $\operatorname{char}(R) \neq 2$, and $\bar{I} \neq 0, \bar{I}$ is right ideal on R, if d is a derivation with period 3 in R,then either $d=0$, or $u^{2}=0 \quad \forall u \in \bar{I}$. Also we proved, when R is a domain with 1 , and char $(R) \neq 6$, If δ is a right generalized derivation on R with period 3, then δ is the identity map. Lastly, we define a map with Period 3 on near-rings, and gived results for prime left nearrings with maps acts as an anti-homomorphism (or homomorphism), with period 3, to obtain commuatative rings.

Keywords: prime ring, derivation, right generalized derivation, prime near-ring, semiprime near-ring, mapping of period 2, homomorphisms, anti-homomorphisms

1. Introduction

Through this paper, R is associative ring and C is the center of R. Recall R is prime if $u R v=(0)$ implies $u=0$ or $v=0$. An additive map $d: R \longrightarrow R$ is derivation (respe. Jordan derivation) if $d(u w)$ $=đ(u) w+u đ(w)$ (respe. $\left.đ\left(w^{2}\right)=đ(w) w+w đ(w)\right)$ holds $\forall w, u \in R$, see[7]. Following [6], an additive map $\delta: R \longrightarrow R$ is called generalized derivation if there is a derivation $đ: R \longrightarrow R$, s.t. $\delta(u w)$ $=\delta(\mathrm{u}) \mathrm{w}+\mathrm{u}(\mathrm{w}), \forall \mathrm{u}, \mathrm{w} \in \mathrm{R}$. An additive map $\delta: \mathrm{R} \rightarrow \mathrm{R}$ is called
right generalized derivation if $\delta(u w)=\delta(u) w+u đ(w), \forall u, w \in R$, and it is called left generalized derivation if $\delta(u w)=đ(u) w+u \delta(w)$, $\forall \mathrm{u}, \mathrm{w} \in \mathrm{R}$. Obviously δ is generalized derivation if it is both right and left generalized derivation. The concept of a map of period 2 was introduced first in [5], from this concept we introduce the concept of a map with period 3 on a ring R, as a map $g: R \longrightarrow R$ is named with period 3 in R, if $g^{3}(u)=u, \forall u \in R$. And, let \bar{I} be right (left) ideal of R, a map $g: \bar{I} \longrightarrow \overline{\mathrm{I}}$ is named with period 3 on $\overline{\mathrm{I}}$ if $\mathrm{g}^{3}(\mathrm{u})=\mathrm{u}, \forall \mathrm{u} \in \overline{\mathrm{I}}$. Also we work replacing of a map of period 2 by a map with period 3 in the results in recent reference. We know a left near-ring is a set LŇ with "two operations + and •" s.t. (LŇ, +) is a group \& (LN, \cdot) is a semigroup holds the left distributive law $\mathrm{u} .(\mathrm{v}+\mathrm{h})=\mathrm{u} \cdot \mathrm{v}+\mathrm{u} \cdot \mathrm{h}, \forall \mathrm{u}, \mathrm{v}, \mathrm{h} \in \mathrm{LN}$, LŇ is called zero symmetric left near-rings if $0 \cdot \mathrm{u}=0, \forall \mathrm{u} \in L \mathrm{~N}$, also, we put uv= u.v. An additive map đ: $\mathrm{N} \rightarrow \mathrm{N}$ is called left derivation if satisfy d(uw) $=$ $\mathrm{u} f(\mathrm{w})+\mathrm{d}(\mathrm{u}) \mathrm{w}, \forall \mathrm{u}, \mathrm{w} \in \mathrm{N}$, and is called right derivation [10], if $\mathrm{d}(\mathrm{uw})=\mathrm{d}(\mathrm{u}) \mathrm{w}+\mathrm{u} đ(\mathrm{w}), \forall \mathrm{u}, \mathrm{w} \in \mathrm{N}$. In [4], a near-ring N is named prime if $u N \check{w}=0, \forall \mathrm{u}, \mathrm{w} \in \mathrm{N}$ gives $\mathrm{u}=0$ or $\mathrm{w}=0$. Let $\emptyset \neq \overline{\mathrm{I}} \subseteq \mathrm{N}$, then \bar{I} is semigroup left ideal (semigroup right ideal) if $\bar{N} \bar{I} \subseteq \bar{I}$ ($\overline{\mathrm{I}} \check{\mathrm{N}} \subseteq \overline{\mathrm{I}}$), and $\overline{\mathrm{I}}$ is called semigroup ideal if it is semigroup left ideal and semigroup right ideal. For terminologies concerning near-rings, we refer to Pilz [9]. An additive map $\mathrm{h}: \mathrm{N} \rightarrow \mathrm{N}$ is named homomorphism (anti-homomorphism) if $\mathrm{h}(\mathrm{uv})=\mathrm{h}(\mathrm{u}) \mathrm{h}(\mathrm{v})$ holds, $\forall \mathrm{u}, \mathrm{v} \in \mathrm{N} \quad(\mathrm{h}(\mathrm{uv})=\mathrm{h}(\mathrm{v}) \mathrm{h}(\mathrm{u}) \forall \mathrm{u}, \mathrm{v} \in \mathrm{N})$. Let $\emptyset \neq \overline{\mathrm{I}} \subseteq \mathrm{N}$, an additive map $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is named homomorphism (antihomomorphism) on $\overline{\mathrm{I}}$, if $\mathrm{f}(\mathrm{uv})=\mathrm{f}(\mathrm{u}) \mathrm{f}(\mathrm{v}), \forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}}(\mathrm{f}(\mathrm{uv})=\mathrm{f}(\mathrm{v}) \mathrm{f}(\mathrm{u})$ $\forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}})$.For more information about commutative near-ring with with some conditions see ([1],[2],[8]) . In the second results in this paper, we introduce a map $f: \breve{N} \rightarrow \check{N}$ is with period 3 on \check{N}, if $f^{3}(u)$ $=u$ for all $u \in N$, and if \bar{I} is non empty subset of \tilde{N}, we call a map f with period 3 on \bar{I} if $f^{3}(u)=u$, for all $u \in \bar{I}$. Also, we give results in prime left near-rings with maps acts as a homomorphism (an antihomomorphism), with period 3 , to get commuatative rings.

2. Main Results

Theorm 2-1:

Let R be a prime ring with char $(R) \neq 2$, and $\overline{\mathrm{I}} \neq 0, \overline{\mathrm{I}}$ right ideal in R. If $đ$ is a derivation with period 3 in R, then either $d=0$, or $\mathrm{u}^{2}=0 \quad \forall \mathrm{u} \in \overline{\mathrm{I}}$.
Proof : Suppose \exists derivation đ on R s.t.
$\mathrm{d}^{3}(\mathrm{u})=\mathrm{u}, \forall \mathbf{u} \in \overline{\mathrm{I}}$
For $u, v \in \bar{I}, u đ(v) \in \bar{I}$, we have:
$\mathrm{d}^{3}(\mathrm{u}(\mathrm{v})=\mathrm{u}(\mathrm{v})$
$\mathrm{d}^{2}(\mathrm{~d}(\mathrm{u}(\mathrm{v}))=\mathrm{u} \ddagger(\mathrm{v})$
$\mathrm{d}^{2}\left(\mathrm{~d}(\mathrm{u}) \mathrm{d}(\mathrm{v})+\mathrm{u}^{2}(\mathrm{v})\right)=\mathrm{u} \mathrm{d}^{2}(\mathrm{v})$
$\mathrm{d}\left[\mathrm{d}(\mathrm{d}(\mathrm{u}) \mathrm{d}(\mathrm{v}))+\mathrm{d}\left(\mathrm{u} \mathrm{d}^{2}(\mathrm{v})\right)\right]=\mathrm{u} \mathrm{d}(\mathrm{v})$
$\mathrm{d}\left(\mathrm{d}^{2}(\mathrm{u}) \mathrm{d}(\mathrm{v})+\mathrm{d}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{v})+\mathrm{d}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{v})+u \mathrm{~d}^{3}(\mathrm{v})\right)=u \AA(\mathrm{v})$
$\left.\mathrm{d}^{4}\left[\mathrm{~d}^{2}(\mathrm{u}) \mathrm{d}(\mathrm{v})\right]+\mathrm{d}\left[\mathrm{d}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{v})\right]+\mathrm{d}\left[\mathrm{d}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{v})\right]+\mathrm{d}\left[\mathrm{u}^{3}(\mathrm{v})\right]\right)=\mathrm{u}(\mathrm{v})$
$\mathrm{d}^{3}(u) \mathrm{d}^{2}(\mathrm{v})+\mathrm{d}^{2}(u) \mathrm{d}^{2}(\mathrm{v})+\mathrm{d}^{2}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{v})+\mathrm{d}(\mathrm{u}) \mathrm{d}^{3}(\mathrm{v})+\mathrm{d}^{2}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{v})+\mathrm{d}(\mathrm{u})$
$d^{3}(v)+d(u) d^{3}(v)+u d^{4}(v)=u đ(v)$
$3 d^{2}(u) d^{2}(v)+3 d^{(u)} d^{3}(v)+u d^{4}(v)=0$
$\left.3 \mathrm{~d}^{2}(u) \mathrm{d}^{2}(\mathrm{v})+3 \mathrm{~d}(\mathrm{u}) \mathrm{v}+u \mathrm{~d}^{\left(d^{3}(\mathrm{v})\right.}\right)=0$
That is:
$3 \mathrm{~d}^{2}(u) \mathrm{d}^{2}(v)+3 đ(u) v+u đ(v)=0, \forall u, v \in \bar{I}$
Also, we have:
$\mathrm{d}^{4}(u v)=\mathrm{d}\left(\mathrm{d}^{3}(u v)\right)=đ(u v)=\mathrm{d}(u) v+u đ(v), \forall u, v \in \bar{I}$
On the other hand:

$$
\begin{equation*}
d^{4}(u v)=d^{3}(d(u v)) \tag{4}
\end{equation*}
$$

$$
=\mathrm{d}^{2}[\mathrm{~d}(\mathrm{~d}(\mathrm{u}) \mathrm{v}+\mathrm{u}(\mathrm{v}))]
$$

$$
=\mathrm{d}^{2}[(\mathrm{~d}(\mathrm{~d}(\mathrm{u}) \mathrm{v})+\mathrm{d}(\mathrm{ud}(\mathrm{v}))]
$$

$$
=\mathrm{d}^{2}\left[\mathrm{~d}^{2}(\mathrm{u}) \mathrm{v}+\mathrm{d}(\mathrm{u}) \mathrm{d}(\mathrm{v})+\mathrm{d}(\mathrm{u}) \mathrm{d}(\mathrm{v})+\mathrm{u}^{2}(\mathrm{v})\right]
$$

$$
=\mathrm{d}^{2}\left[\mathrm{~d}^{2}(\mathrm{u}) \mathrm{v}+2 \mathrm{~d}(\mathrm{u}) \mathrm{d}(\mathrm{v})+\mathrm{u} \AA^{2}(\mathrm{v})\right]
$$

$$
=\mathrm{d}\left[\mathrm{~d}^{3}(u) v+\mathrm{d}^{2}(u) d(v)+2 d^{2}(u) d(v)+2 d(u) d^{2}(v)+d(u) d^{2}(v)+\right.
$$ $\left.u d^{3}(\mathrm{v})\right]$

$=d^{4}(u) v+d^{3}(u) d(v)+d^{3}(u) d(v)+d^{2}(u) d^{2}(v)+2 d^{3}(u) d(v)$
$+2 d^{2}(u) \AA^{2}(v) \quad+2 d^{2}(u) d^{2}(v)+2 đ(u) d^{3}(v)+d^{2}(u) d^{2}(v)$
$+\mathrm{d}(\mathrm{u}) \mathrm{d}^{3}(\mathrm{v})+\mathrm{d}(\mathrm{u}) \mathrm{d}^{3}(\mathrm{v})+\mathrm{u}^{4}(\mathrm{v})$

$$
\begin{equation*}
=\mathrm{d}(\mathrm{u}) \mathrm{v}+4 \mathrm{u}(\mathrm{v})+6 \mathrm{~d}^{2}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{v})+4 \mathrm{~d}(\mathrm{u}) \mathrm{v}+\mathrm{ud}(\mathrm{v}), \forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}} \tag{5}
\end{equation*}
$$

From (4), (5):
$4 u đ(v)+6 \mathrm{~d}^{2}(u) \mathrm{d}^{2}(v)+4 đ(u) v=0, \forall u, v \in \bar{I}$

From (3), (6):
$3 u đ(v)+3 d^{2}(u) d^{2}(v)+đ(u) v=0, \forall u, v \in \bar{I}$
From (3), (7):
$3 u đ(v)+đ(u) v-3 đ(u) v-u đ(v)=0$
That is:
$2 u đ(v)-2 đ(u) v=0, \forall u, v \in \bar{I}$
Putting vr instead of v in (8):
$2 u đ(v) r+2 u v đ(r)-2 d(u) v r=0, \forall u, v \in \bar{I}, r \in R$
From (8), (9):
$2 u v đ(r)=0, \forall u, v \in \bar{I}, r \in R$
Since char (R) $\neq 2$:
$u v đ(r)=0, \forall u, v \in \bar{I}, r \in R$
Putting rs instead of r in (11):
$\operatorname{uvd}(\mathrm{r}) \mathrm{s}+\operatorname{uvrd}(\mathrm{s})=0$,
That is:
$\operatorname{uvr} đ(s)=0, \forall u, v \in \bar{I}, r, s \in R$
Since R is prime:
Either $\mathrm{d}(\mathrm{s})=0, \forall \mathrm{~s} \in \mathrm{R}$, that is $\mathrm{d}=0$
or, $\mathrm{uv}=0 \forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}}$, that is $\mathrm{u}^{2}=0, \forall \mathrm{u} \in \overline{\mathrm{I}}$.

Theorm 2-2:

Let R be a prime ring with char $(R) \neq 6$ and let $đ$ be a derivation on R . If δ is right generalized derivation given by $\delta(\mathrm{u})=$ $\mathrm{u}+\mathrm{d}(\mathrm{u}) \forall \mathrm{u} \in \overline{\mathrm{I}}$ is with period 3 on R . Then δ is the identity map.
Proof: Consider:
$\delta(\mathrm{u})=\mathrm{u}+\mathrm{d}(\mathrm{u}), \forall \mathrm{u} \in \mathrm{R}$
Since δ is with period 3:

$$
\begin{align*}
\delta^{2}(\delta(u) & =u+d(u)) \tag{13}\\
\delta^{3}(u)= & \delta^{2}(u+d(u)) \\
& =\delta[\delta(u+d(u)] \\
& =\delta[(u+d(u)+d(u+d(u))] \\
& =\delta\left[\left(u+d(u)+d(u)+d^{2}(u)\right]\right. \\
& =\delta(u)+\delta(d(u))+\delta(d(u))+\delta\left(d^{2}(u)\right) \\
& =u+d(u)+d(u)+d^{2}(u)+d(u)+d^{2}(u)+d^{2}(u)+d^{3}(u)
\end{align*}
$$

From (13):
$u=u+3 d(u)+3 \mathrm{~d}^{2}(u)+d^{3}(u), \forall u \in R$

That is:
$3 đ(u)+3 \mathrm{~d}^{2}(u)+d^{3}(u)=0, \forall u \in R$
Putting uv instesd of u in (15):
$3 \mathrm{~d}(u v)+3 \mathrm{~d}^{2}(u v)+\mathrm{d}^{3}(u v)=0$
$3 d(u) v+3 u d(v)+3 d[d(u) v+u d(v)]+d^{2}[d(u) v+u d(v)]=0$
$3 \mathrm{~d}(\mathrm{u}) \mathrm{v}+3 \mathrm{u} d(\mathrm{v})+3 \mathrm{~d}[\mathrm{~d}(\mathrm{u}) \mathrm{v}]+3 \mathrm{~d}[\mathrm{u}(\mathrm{v})]+\mathrm{d}^{2}[\mathrm{~d}(\mathrm{u}) \mathrm{v}]+\mathrm{d}^{2}[\mathrm{u} d(\mathrm{v})]=0$
$3 d(u) v+3 u \notin(v)+3 d^{2}(u) v+3 d(u) d(v)+3 d(u) d(v)+3 u d^{2}(v)+$ $\mathrm{d}\left[\mathrm{d}^{2}(\mathrm{u}) \mathrm{v}+\mathrm{d}(\mathrm{u}) \mathrm{d}(\mathrm{v})\right]+\mathrm{d}\left[\mathrm{d}(\mathrm{u}) \AA(\mathrm{v})+u \mathrm{~d}^{2}(\mathrm{v})\right]=0$
$3 d(u) v+3 u đ(v)+3 d^{2}(u) v+6 d(u) d(v)+3 u d^{2}(v)+d^{3}(u) v+$ $\mathrm{d}^{2}(u) \mathbb{d}(v)+\mathrm{d}^{2}(u) đ(v)+d(u) \mathbb{d}^{2}(v)+d^{2}(u) d(v)+d(u) \AA^{2}(v)+đ(u) d^{2}(v)+$ $u^{3}(\mathrm{v})=0, \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}$
From (15) and (16):
$6 d(u) d(v)+3 d^{2}(u) đ(v)+3 d(u) d^{2}(v)=0, \forall u, v \in R$
Putting vr instesd of v in (17):
$6 \mathrm{~d}(\mathrm{u}) \mathrm{d}(\mathrm{vr})+3 \mathrm{~d}^{2}(\mathrm{u}) \mathrm{d}(\mathrm{vr})+3 \mathrm{~d}(\mathrm{u}) \mathrm{d}^{2}(\mathrm{vr})=0$
$6 d(u) d(v) r+6 d(u) v d(r)+3 d^{2}(u) d(v) r+3 d^{2}(u) v đ(r)+3 d(u) d^{2}(v) r+$ $3 đ(u) đ(v) đ(r)+3 đ(u) d(v) d\left((r)+3 đ(u) \mathrm{q}^{2}(r)=0, \forall u, v, r \in R\right.$

From (17) and (18):
$6 d(u) v đ(r)+3 d^{2}(u) v đ(r)+3 d(u) d(v) d(r)+3 đ(u) d(v) đ(r)$
$+3 \mathrm{~d}(\mathrm{u}) \mathrm{vd}^{2}(\mathrm{r})=0, \forall \mathrm{u}, \mathrm{v}, \mathrm{r} \in \mathrm{R}$
Putting $d(v)$ instead of v in (19):
$6 d(u) d(v) d(r)+3 d^{2}(u) d(v) d(r)+3 d(u) d^{2}(v) d(r)+3 d(u) d^{2}(v) d(r)$
$+3 \mathrm{~d}(\mathrm{u}) \mathrm{d}(\mathrm{v}) \mathrm{d}^{2}(\mathrm{r})=0, \forall \mathrm{u}, \mathrm{v}, \mathrm{r} \in \mathrm{R}$
From (17) and (20):
$3 đ(u) d^{2}(v) đ(r)+3 đ(u) d(v) d^{2}(r)=0, \forall u, v, r \in R$
That is:
$3 \mathrm{~d}(\mathrm{u})\left[\mathrm{d}^{2}(\mathrm{v}) \mathrm{d}(\mathrm{r})+\mathrm{d}(\mathrm{v}) \mathrm{d}^{2}(\mathrm{r})\right]=0, \forall \mathrm{u}, \mathrm{v}, \mathrm{r} \in \mathrm{R}$
Putting us instead of u in (22):
$3[đ(u) s+u đ(s)]\left[d^{2}(v) đ(r)+đ(v) d^{2}(r)\right]=0, \forall u, v, r, s \in R$
From (22) and (23):
$3 \mathrm{~d}(\mathrm{u}) \mathrm{s}\left[\mathrm{d}^{2}(\mathrm{v}) \mathrm{d}(\mathrm{r})+\mathrm{d}(\mathrm{v}) \mathrm{d}^{2}(\mathrm{r})\right]=0$
$\mathrm{d}(\mathrm{u}) \mathrm{s}\left[3 \mathrm{~d}^{2}(\mathrm{v}) \mathrm{d}(\mathrm{r})+3 \mathrm{~d}(\mathrm{v}) \mathrm{d}^{2}(\mathrm{r})\right]=0, \forall \mathrm{u}, \mathrm{v}, \mathrm{r}, \mathrm{s} \in \mathrm{R}$
Since R is prime, either $d=0$, or,
$3 \mathrm{~d}^{2}(\mathrm{v}) \mathrm{d}(\mathrm{r})+3 \mathrm{~d}(\mathrm{v}) \mathrm{d}^{2}(\mathrm{r})=0, \forall \mathrm{v}, \mathrm{r} \in \mathrm{R}$
From (17) and (24):
$-6 đ(u) đ(v)=0, \forall u, v \in R$
Since char $(R) \neq 6$:
$đ(u) đ(v)=0, \forall u, v \in R$
Putting vr instead of v in (26):
$đ(u) d(v) r+đ(u) v đ(r)=0, \forall u, v, r \in R$
From (26) and (27):
đ(u)vđ(r) $=0, \forall u, v, r \in R$
Since R is prime, (28) gives $d=0$.

Theorem 2-3:

Let R be prime ring with char $(\mathrm{R}) \neq 6$, and let δ be right generalized derivation on R with associated derivation $đ$. If δ is with period 3 on R, then $đ(C)=\{0\}$.

Proof:

$u v=\delta^{3}(u v), \forall u, v \in R$
That is:

$$
\begin{aligned}
u v= & \delta^{2}(\delta(u v)) \\
= & \delta^{2}(\delta(u) v+u đ(v)) \\
= & \delta\left(\delta^{2}(u) v+\delta(u) đ(v)+\delta(u) đ(v)+u đ^{2}(v)\right) \\
= & \delta^{3}(u) v+\delta^{2}(u) đ(v)+\delta^{2}(u) đ(v)+\delta(u) \AA^{2}(v)+\delta^{2}(u) đ(v) \\
& \quad+\delta(u) \AA^{2}(v)+\delta(u) \AA^{2}(v)+u đ^{3}(v) \\
= & \delta^{3}(u) v+3 \delta^{2}(u) đ(v)+3 \delta(u) \AA^{2}(v)+u đ^{3}(v), \forall u, v \in R
\end{aligned}
$$

Since δ is period 3:
$u v=u v+3 \delta^{2}(u) đ(v)+3 \delta(u) d^{2}(v)+u đ^{3}(v), \forall u, v \in R$
That is:
$3 \delta^{2}(\mathrm{u}) đ(\mathrm{v})+3 \delta(\mathrm{u}) \AA^{2}(\mathrm{v})+\mathrm{u}^{3}(\mathrm{v})=0, \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}$
Putting $\delta^{2}(u)$ instead of u in (29):
$3 \delta(\mathrm{u}) đ(\mathrm{v})+3 u đ^{2}(\mathrm{v})+\delta^{2}(\mathrm{u}) \mathrm{d}^{3}(\mathrm{v})=0, \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}$
Letting $\mathrm{c} \in \mathrm{C}, \mathrm{u} \in \mathrm{R}$ and Putting uc instead of u in (30):
$3 \delta(u c) d(v)+3 u c đ^{2}(v)+\delta^{2}(u c) d^{3}(v)=0$
$3 \delta(u) c đ(v)+3 u đ(c) đ(v)+3 u c đ^{2}(v)+\delta^{2}(u) c đ^{3}(v)+$ $\delta(\mathrm{u}) \mathrm{d}^{(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})+\delta(\mathrm{u}) đ(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})+\mathrm{u} \AA^{2}(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})=0, ~}$
$\forall u, v \in R, c \in C$
That is:

$$
\begin{align*}
& 3 \delta(\mathrm{u}) \mathrm{cd}(\mathrm{v})+3 \mathrm{u}(\mathrm{c}) \mathrm{d}(\mathrm{v})+3 \mathrm{uc}^{2}(\mathrm{v})+\delta^{2}(\mathrm{u}) \mathrm{ct}^{3}(\mathrm{v}) \\
& \quad+2 \delta(\mathrm{u}) \AA(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})+\mathrm{u}^{2}(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})=0, \\
& \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}, \mathrm{c} \in \mathrm{C} \tag{31}
\end{align*}
$$

From (30) and (31):
$3 u đ(c) d(v)+2 \delta(u) d(c) d^{3}(v)+u đ^{2}(c) d^{3}(v)=0$
$\forall u, v \in R, c \in C$
Again letting $c \in C, u \in R$ and Putting uc instead of u in (32):
$3 u c đ(c) d(v)+2 \delta(u c) d(c) d^{3}(v)+u c d^{2}(c) d^{3}(v)=0$
$, \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}, \mathrm{c} \in \mathrm{C}$
Left multiplication of (32) by $\mathrm{c}, \mathrm{c} \in \mathrm{C}$:
$3 c u đ(c) d(v)+2 c \delta(u) d(c) d^{3}(v)+\operatorname{cu}^{2}(c) d^{3}(v)=0$ $, \forall u, v \in R, c \in C$
Comparing (33) and (34):
$2 \delta(\mathrm{uc}) đ(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})=2 \mathrm{c} \delta(\mathrm{u}) đ(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v}), \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}, \mathrm{c} \in \mathrm{C}$
That is:

$$
\begin{align*}
2 \delta(u) c đ(c) d^{3}(v)+2 u đ(c) đ(c) d^{3}(v) & =2 c \delta(u) đ(c) d^{3}(v) \tag{35}\\
& , \forall u, v \in R, c \in C \tag{36}
\end{align*}
$$

This implies:
$2 u đ^{2}(c) d^{3}(v)=0, \forall u, v \in R, c \in C$
Since char $(\mathrm{R}) \neq 6$:
$u \mathrm{~d}^{2}(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})=0, \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}, \mathrm{c} \in \mathrm{C}$
Since R is prime:
$\mathrm{d}^{2}(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})=0, \forall \mathrm{v} \in \mathrm{R}, \mathrm{c} \in \mathrm{C}$
From (32) and (39):
$3 u \not d^{(c)} \ddagger(\mathrm{v})+2 \delta(\mathrm{u}) đ(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})=0, \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}, \mathrm{c} \in \mathrm{C}$
Letting $c \in R$, and Putting uc instead of u in (40):
$3 u c đ(c) đ(v)+2 \delta(u) c đ(c) \AA^{3}(v)+2 u đ(c) d^{3}(v)=0$

$$
\begin{equation*}
, \forall u, v \in R, c \in C \tag{41}
\end{equation*}
$$

From (40) and (41):
$3 u \not d^{(c)} d^{3}(v)=0, \forall u, v \in R, c \in C$
Since char $(R) \neq 6$:
$u đ(c) d^{3}(v)=0, \forall u, v \in R, c \in C$
Putting $\delta(u)$ instead of u by in (43):
$\delta(\mathrm{u}) \mathbb{d}(\mathrm{c}) \mathrm{d}^{3}(\mathrm{v})=0, \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}, \mathrm{c} \in \mathrm{C}$
From (40) and (44):
$3 u đ(c) đ(v)=0, \forall u, v \in R, c \in C$
Since char $(\mathrm{R}) \neq 6$:
$u đ(c) đ(v)=0, \forall u, v \in R, c \in C$
Since R is prime :
$đ(c) đ(v)=0, \forall v \in R, c \in C$
Putting vr instead of v in (47), we get
$đ(c) đ(v) r+đ(c) v đ(r)=0, \forall r, v \in R, c \in C$
From (47) and (48):
$đ(c) v đ(r)=0, \forall r, v \in R, c \in C$
Putting c instead of r in (49):
$đ(c) v đ(c)=0, \forall v \in R, c \in C$
Since R is prime , hence $d(C)=\{0\}$

Theorem 2-4:

Let R be a domain with 1 , with char $(\mathrm{R}) \neq 6$. If δ is a right generalized derivation on R with period 3 , then δ is the identity map
Proof: Note:
$\delta(\mathrm{u})=\delta(1 . \mathrm{u})=\delta(1) \mathrm{u}+\mathrm{d}(\mathrm{u}), \forall \mathrm{u} \in \mathrm{R}$
Taking $\mathrm{u}=1$ in (29) And letting $\mathrm{K}=\delta(1)$:
$3 \delta^{2}(1) đ(v)+3 \delta(1) đ^{2}(v)+đ^{3}(v)=0$
$3 \mathrm{~K}^{2} \mathrm{~d}(\mathrm{v})+3 \mathrm{Ka}^{2}(\mathrm{v})+\mathrm{d}^{3}(\mathrm{v})=0, \forall \mathrm{v} \in \mathrm{R}$
Putting $\delta(\mathrm{u})$ instead of u in (29):
$3 \delta^{3}(u) đ(v)+3 \delta^{2}(u) \AA^{2}(v)+\delta(u) d^{3}(v)=0$
That is:
$3 u đ(v)+3 \delta^{2}(u) đ^{2}(v)+\delta(u) đ^{3}(v)=0, \quad \forall u, v \in R$
Putting $\mathrm{u}=1$ in (53) and Putting $\mathrm{K}=\delta(1)$:
$3 \mathrm{~d}(\mathrm{v})+3 \mathrm{~K}^{2} \mathrm{~d}^{2}(\mathrm{v})+\mathrm{Kd}^{3}(\mathrm{v})=0, \quad \forall \mathrm{v} \in \mathrm{R}$
Left multiplication of (52) by K:
$3 \mathrm{~K}^{2} \mathrm{~d}(\mathrm{v})+3 \mathrm{~K}^{2} \mathrm{~d}^{2}(\mathrm{v})+\mathrm{Kd}^{3}(\mathrm{v})=0, \quad \forall \mathrm{v} \in \mathrm{R}$
From (54) and (55):
$3 \mathrm{~K}^{3} đ(\mathrm{v})=3 \AA(\mathrm{v})$
$3\left(\mathrm{~K}^{3}-1\right) \mathbb{d}(\mathrm{v})=0, \forall \mathrm{v} \in \mathrm{R}$
Since R is 6-torsion free:
$\left(K^{3}-1\right) đ(v)=0 \quad \forall v \in R$
Since R is domain, and if $đ \neq 0$, we get $K^{3}=1$

That is $K=1$, so that:
$\delta(\mathrm{u})=\mathrm{u}+\mathrm{d}(\mathrm{u})$ for all $\mathrm{u} \in \mathrm{R}$
and by Theorm $2-2, \delta$ is the identity map

3. Other Results

Lemma 3-1,[3]

Let \bar{N} be prime. Let $\overline{\mathrm{I}} \neq 0, \overline{\mathrm{I}}$ is semigroup right ideal (respe, semigroup left ideal). If u is an element in $\stackrel{N}{N}$ s.t. $\overline{\mathrm{I}} \mathrm{u}=\{0\}$ (respe. $u \overline{\mathrm{I}}$ $=\{0\}$), then $u=0$.

Definition 3-2:

A map $\delta: ~ \check{N} \rightarrow \tilde{N}$ is with period 3 on \check{N}, if $\delta^{3}(\mathrm{u})=\mathrm{u}, \forall \mathrm{u} \in \tilde{\mathrm{N}}$, and if $\overline{\mathrm{I}}$ is non empty subset of $\stackrel{\mathrm{N}}{ }$, we call a map δ with period 3 on $\overline{\mathrm{I}}$ if $\delta^{3}(\mathrm{u})=\mathrm{u}, \forall \mathrm{u} \in \overline{\mathrm{I}}$.

Example 3-3:

Let S be a zero symmetric left near-ring, and let
$\check{\mathrm{N}}=\left\{\left[\begin{array}{lll}0 & \mathrm{~h} & \mathrm{k} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], 0, \mathrm{~h}, \mathrm{k} \in \mathrm{S}\right\}$
Define a map $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ as follows:
$\mathrm{f}\left(\left[\begin{array}{ccc}0 & \mathrm{~h} & \mathrm{k} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right)=\left[\begin{array}{ccc}0 & \mathrm{~h} & \mathrm{k} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
We show that N is a zero symmetric left near-ring, and we show f is with period 3

Theorm 3.4:

Let L Ň be prime. Let $\bar{I} \neq 0$, \bar{I} be semigroup ideal of $L N ̌$. Suppose δ is an anti-homomorphism in LN. If δ is with period 3 on $\overline{\mathrm{I}}$, then LN is commutative Ring.

Proof:

$$
\begin{aligned}
u v & =\delta^{3}(\mathrm{uv}) \\
& =\delta^{2}(\delta(\mathrm{uv})) \\
& =\delta^{2}(\delta(\mathrm{v}) \delta(\mathrm{u})) \\
& =\delta(\delta(\delta(\mathrm{v}) . \delta(\mathrm{u})))
\end{aligned}
$$

$$
\begin{align*}
& =\delta(\delta(\delta(\mathrm{u})) \cdot \delta(\delta(\mathrm{v}))) \\
& =\delta\left(\delta^{2}(\mathrm{u}) \cdot \delta^{2}(\mathrm{v})\right) \\
& =\delta\left(\delta^{2}(\mathrm{v})\right) \cdot \delta\left(\delta^{2}(\mathrm{u})\right) \\
& =\delta^{3}(\mathrm{v}) \cdot \delta^{3}(\mathrm{u}) \\
& =\mathrm{vu}, \forall \mathrm{u}, \mathrm{v}, \in \overline{\mathrm{I}} \tag{58}
\end{align*}
$$

$\forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}}$ and $\mathrm{b}, \mathrm{s} \in \mathrm{L} \mathrm{N}:$
$u v(b s-s b)=u v b s-u v s b$,
Since (ĪLŇ $\subset \bar{I})$, and from (58):
$u v(b s-s b)=v u b s-v s u b, \forall u, v \in \bar{I}, \forall b, s \in L N ̌$
Since \bar{I} is semigroup ideal of LN , and from(58):
$u v(b s-s b)=u b v s-u b v s, \forall u, v \in \bar{I} \quad \forall b, s \in L N ̌$
That give:
$\overline{\mathrm{I}} \mathrm{v}(\mathrm{bs}-\mathrm{sb})=\{0\}, \forall \mathrm{v} \in \overline{\mathrm{I}} \quad \forall \mathrm{b}, \mathrm{s} \in \mathrm{LN}$
Lemma 3-1 give that:
$\mathrm{v}(\mathrm{bs}-\mathrm{sb})=0, \quad \forall \mathrm{v} \in \overline{\mathrm{I}} \quad \forall \mathrm{b}, \mathrm{s} \in \mathrm{L} \check{\mathrm{N}}$
That is:
$\overline{\mathrm{I}}(\mathrm{bs}-\mathrm{sb})=0, \quad \forall \mathrm{~b}, \mathrm{~s} \in \mathrm{LN}$
Lemma 3-1 give that:
$\mathrm{bs}=\mathrm{sb}, \forall \mathrm{b}, \mathrm{s} \in \mathrm{LN}$
By using (65):
$(\mathrm{u}+\mathrm{v}) \mathrm{h}=\mathrm{h}(\mathrm{u}+\mathrm{v}), \forall \mathrm{u}, \mathrm{v}, \mathrm{h} \in \mathrm{LN}$
That give:
$(\mathrm{u}+\mathrm{v}) \mathrm{h}=\mathrm{hu}+\mathrm{hv}, \forall \mathrm{u}, \mathrm{v}, \mathrm{h} \in \mathrm{LN}$
Use (65) and (67) give:
$(u+v) h=u h+v h, \forall u, v, h \in L N ̌$
Now, let $u, v, h \in L N ̌$, applying (68):
$(\mathrm{h}+\mathrm{h})(\mathrm{u}+\mathrm{v})=\mathrm{h}(\mathrm{u}+\mathrm{v})+\mathrm{h}(\mathrm{u}+\mathrm{v}), \forall \mathrm{u}, \mathrm{v}, \mathrm{h} \in \mathrm{L} \check{\mathrm{N}}$
That is:
$(h+h)(u+v)=h u+h v+h u+h v, \forall u, v, h \in L N ̌$
On the other hand:
$(\mathrm{h}+\mathrm{h})(\mathrm{u}+\mathrm{v})=(\mathrm{h}+\mathrm{h}) \mathrm{u}+(\mathrm{h}+\mathrm{h}) \mathrm{v}, \forall \mathrm{u}, \mathrm{v}, \mathrm{h} \in \mathrm{L} N$
That is:
$(\mathrm{h}+\mathrm{h})(\mathrm{u}+\mathrm{v})=\mathrm{h} u+\mathrm{h} u+\mathrm{hv}+\mathrm{h} v, \quad \forall \mathrm{u}, \mathrm{v}, \mathrm{h} \in \mathrm{LN}$
Comparing (70) and (72):
$h u+h v=h v+h u, \quad \forall u, v, h \in L N ̌$
give that:
$h(u+v-u-v)=0, \forall u, v, h \in L N ̌$
LN is left near ring, give that:
$(\mathrm{u}+\mathrm{v}-\mathrm{u}-\mathrm{v}) \mathrm{LN}(\mathrm{u}+\mathrm{v}-\mathrm{u}-\mathrm{v})=\{0\}, \forall \mathrm{u}, \mathrm{v} \in \mathrm{L} \check{\mathrm{N}}$
LN is semiprime:
$\mathrm{u}+\mathrm{v}-\mathrm{u}-\mathrm{v}=0, \quad \forall \mathrm{u}, \mathrm{v} \in \mathrm{L}$ Ň
Thus (65), (68), and (76) give LŇ is commutative ring.

Corollary 3-5:

Let LŇ be prime, δ is an anti-homomorphism in LŇ, such that δ is with period 3 on LN . Then LN is commutative ring.

Theorm 3-6:

Let L Ň be prime. Let $\overline{\mathrm{I}} \neq 0, \overline{\mathrm{I}}$ be semigroup ideal of LŇ. Suppose δ is an anti-homomrphism in LŇ. If δ is with period 3 on $\overline{\mathrm{I}}$, then $(\mathrm{t}+\mathrm{b}) \mathrm{y}=\mathrm{ty}+\mathrm{by}, \quad \forall \mathrm{t}, \mathrm{b}, \mathrm{y} \in \mathrm{LN}$
Proof:

$$
\begin{align*}
(\mathrm{u}+\mathrm{v}) \mathrm{h} & =\delta^{3}(\mathrm{u}+\mathrm{v}) \cdot \delta^{3}(\mathrm{~h}) \\
& =\delta\left(\delta^{2}(\mathrm{u}+\mathrm{v})\right) \cdot \delta\left(\delta^{2}(\mathrm{~h})\right) \\
& =\delta\left(\delta^{2}(\mathrm{~h}) \cdot \delta^{2}(\mathrm{u}+\mathrm{v})\right) \\
& =\delta(\delta(\delta(\mathrm{h})) \cdot \delta(\delta(\mathrm{u}+\mathrm{v}))) \\
& =\delta(\delta(\delta(\mathrm{u}+\mathrm{v}) \cdot \delta(\mathrm{h}))) \\
& =\delta^{2}(\delta(\mathrm{u}+\mathrm{v}) \cdot \delta(\mathrm{h})) \\
& =\delta^{2}(\delta(\mathrm{~h}(\mathrm{u}+\mathrm{v}))) \\
& =\delta^{3}(\mathrm{~h}(\mathrm{u}+\mathrm{v})) \\
& =\mathrm{h}(\mathrm{u}+\mathrm{v}), \quad \forall \mathrm{u}, \mathrm{v}, \mathrm{~h} \in \overline{\mathrm{I}} \tag{77}
\end{align*}
$$

That is:

$$
\begin{aligned}
\mathrm{h}(\mathrm{u}+\mathrm{v}) & =\delta^{3}(\mathrm{~h}) \cdot \delta^{3}(\mathrm{u}+\mathrm{v}) \\
& =\delta\left(\delta^{2}(\mathrm{~h})\right) \cdot \delta\left(\delta^{2}(\mathrm{u}+\mathrm{v})\right) \\
& =\delta\left(\delta^{2}(\mathrm{u}+\mathrm{v}) \cdot \delta^{2}(\mathrm{~h})\right) \\
& =\delta(\delta(\delta(\mathrm{u}+\mathrm{v})) \cdot \delta(\delta(\mathrm{h}))) \\
& =\delta(\delta(\delta(\mathrm{h}) \cdot \delta(\mathrm{u}+\mathrm{v}))) \\
& =\delta^{2}(\delta(\mathrm{~h}) \cdot \delta(\mathrm{u}+\mathrm{v})) \\
& =\delta^{2}(\delta(\mathrm{~h})(\delta(\mathrm{u})+(\delta(\mathrm{v}))) \\
& =\delta^{2}(\delta(\mathrm{~h}) \delta(\mathrm{u})+\delta(\mathrm{h}) \cdot \delta(\mathrm{v}))
\end{aligned}
$$

$$
\begin{align*}
& =\delta^{2}(\delta(\mathrm{uh})+\delta(\mathrm{vh})) \\
& =\delta^{2}\left(\delta(\mathrm{uh})+\delta^{2}(\delta(\mathrm{vh}))\right. \\
& =\delta^{3}(\mathrm{uh})+\delta^{3}(\mathrm{vh}) \\
& =\mathrm{uh}+\mathrm{vh}, \quad \forall \mathrm{u}, \mathrm{v}, \mathrm{~h} \in \overline{\mathrm{I}} \tag{78}
\end{align*}
$$

From (77), (78):
$(u+v) h=u h+v h, \quad \forall u, v, h \in \bar{I}$
Putting $u=u a$, and $v=u b$, in (60), we obtain:
(ua +ub$) \mathrm{h}=$ uah $+\mathrm{ubh}, \quad \forall \mathrm{u}, \mathrm{h} \in \overline{\mathrm{I}}, \quad \mathrm{a}, \mathrm{b} \in \mathrm{LN}$
From (78), (80):
$u(a+b) h=u(a h+b h), \quad \forall u, h \in \bar{I}, \quad a, b \in L N ̌$
That is mean:
$\mathrm{u}((\mathrm{a}+\mathrm{b}) \mathrm{h}-(\mathrm{ah}+\mathrm{bh}))=0, \quad \forall \mathrm{u}, \mathrm{h} \in \overline{\mathrm{I}}, \mathrm{a}, \mathrm{b} \in \mathrm{L} \check{\mathrm{N}}$
Hence:
$\overline{\mathrm{I}}((\mathrm{a}+\mathrm{b}) \mathrm{h}-(\mathrm{ah}+\mathrm{bh}))=0, \quad \forall \mathrm{~h} \in \overline{\mathrm{I}}, \quad \mathrm{a}, \mathrm{b} \in \mathrm{L} \overline{\mathrm{N}}$
Use Lemma 3-1:
$(\mathrm{a}+\mathrm{b}) \mathrm{h}=\mathrm{ah}+\mathrm{bh}, \quad \forall \mathrm{h} \in \overline{\mathrm{I}}, \quad \mathrm{a}, \mathrm{b} \in \mathrm{LN}$
Now Putting yh instesd of $h, y \in L N ̌$, in (84):
$(\mathrm{a}+\mathrm{b}) \mathrm{yh}=(\mathrm{ayh}+\mathrm{byh}), \quad \forall \mathrm{h} \in \overline{\mathrm{I}}, \quad \mathrm{a}, \mathrm{b}, \mathrm{y} \in \mathrm{LN}$
From (84), we have:
$(a y h+b y h)=(a y+b y) h, \quad \forall h \in \bar{I}, \quad a, b, y \in L N ̌$
Using (85) in (86):
$(a+b) y h=(a y+b y) h, \quad \forall h \in \bar{I}, \quad a, b, y \in L N ̌$
Relation (79), give $\forall h \in \bar{I}, a, b, y \in L N ̌:$
$((a+b) y-(a y+b y)) h=(a+b) y h+(-(a y+b y)) h$,
$\forall h \in \bar{I}, a, b, y \in L N ̌$
Relations (87) and (88), give:

$$
\begin{align*}
&((a+b) y-(a y+b y)) h \\
&=(a y+b y) h+(-(a y+b y)) h \\
&=((a y+b y)+(-(a y+b y))) h \\
&=0 . h \tag{89}\\
& 0, \forall h \in \bar{I}, \text { a, } b, y \in L N ̌
\end{align*}
$$

Implies:
$((a+b) y-(a y+b y)) \overline{\mathrm{I}}=0, \forall a, b, y \in L N ̌$
Lemma 3-1 give:
$(a+b) y=a y+b y, \quad \forall a, b, y \in L N ̌$

Corollary 3-7:

Let LŇ be prime. Suppose δ is an anti-homomrphism in LŇ. If δ is with period 3 on LN , then:

$$
(a+b) y=a y+b y, \quad \forall a, b, y \in L N ̌
$$

Theorm 3-8:

Let LŇ be prime. Let $\bar{I} \neq 0$, \bar{I} be semigroup ideal of LŇ. Suppose δ is an endomorphism in LŇ. If δ is with period 3 on $\overline{\mathrm{I}}$, and $\delta(\overline{\mathrm{I}}) \subseteq \overline{\mathrm{I}}$, and $\delta(\mathrm{uv})=\delta(\mathrm{vu}), \forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}}$, then LŇ is commutative ring.

Proof:

$$
\begin{align*}
u v & =\delta^{3}(\mathrm{uv}) \\
& =\delta^{2}(\delta(\mathrm{uv})) \\
& =\delta^{2}(\delta(\mathrm{vu})) \\
& =\delta^{2}(\delta(\mathrm{v}) \cdot \delta(\mathrm{u})) \\
& =\delta\left(\delta^{2}(\mathrm{v}) . \delta^{2}(\mathrm{u})\right) \\
& =\delta^{3}(\mathrm{v}) . \delta^{3}(\mathrm{u}) \\
& =\mathrm{vu} \quad \forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}} \tag{92}
\end{align*}
$$

From (59) to the end of (76) we obtain LN is commutative.

Corollary 3-9:

Let LŇ be prime. Suppose δ is an endomorphism in LŇ. If δ is with period 3 , and $\delta(u v)=\delta(v u)$ for all $u, v \in L N ̌$, then $L N ̌$ is commutative ring.

Theorm 3-10:

Let LŇ be prime, \bar{I} is a non-zero semigroup ideal of LŇ , δ is a map on $\overline{\mathrm{I}}$, such that δ is with period 3 and $\delta(u v)=\delta(v u)$, $\forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}}$, then LN is commutative ring.

Proof:

$$
\begin{align*}
u v & =\delta^{3}(\mathrm{uv}) \\
& =\delta^{2}(\delta(\mathrm{uv})) \\
& =\delta^{2}(\delta(\mathrm{vu})) \\
& =\delta^{3}(\mathrm{vu}) \\
& =\mathrm{vu} \quad \forall \mathrm{u}, \mathrm{v} \in \overline{\mathrm{I}} \tag{93}
\end{align*}
$$

Relations (59), (76) obtain LN is commutative ring.

Corollary 3-11 :

Let LŇ be prime, δ is a map in LŇ, such that δ is with period 3 and $\delta(\mathrm{uv})=\delta(\mathrm{vu}), \forall \mathrm{u}, \mathrm{v} \in \mathrm{LN}$, then LN is commutative ring.

References

[1] Atteya M. J. and Resan D. I.,"Commutativity of Left NearRings", J. of the College of Basic Education, University of Babylon, No.special, January 2012.
[2] Ahmed A. M., Kamal L. and Khalid H. Al-Shaalan, "Commutativity of Rings and Near-Rings with Generalized Derivations", Indian J. Pure Appl. Math., 44(4), 473-496, 2013.
[3] Bell. H. E. On Derivations in Near-Ring II, Kluwer Academic.Publisheres. Dordrecht, 426,191-197, 1997.
[4] Bell H. E. and Mason G., "On derivations in near-rings, Near-Rings and Near-Fields" (G. Betsch, Ed.) NorthHolland, Amsterdam 31-35, 1987.
[5] Bell . H.E and Daif. M.N., "On Maps of Period 2 on Prime and Semiprime Rings", Hindawi Publishing Corporation, 2014,1-5, 2014.
[6] M. Brešar, "On the distance of the composition of two derivations to the generalized derivations", Glasgow Math. J. 33 89-93,1991.
[7] N. Jacobson, "Structure of rings", Amer. Math. Soc. Coll. Pub. 37, Amer. Math. Soc. Providence R. I., 1956.
[8] KOC E. "Notes on The Commutativity of Prime NearRings", Miskolc Math. Notes, 12(2), 193-200, 2011.
[9] Pilz ,G. 'ear-Rings, North Holland Publishing Company Amsterdam .New York, Oxford, 1983.
[10] Wang X. K., "Derivations in prime near-rings", Proc. Amer. Math. Soc.121, 361-366, 1994.

الدالة الجمعية ذات الاورة 3 في الحلقات والحلقات المقتربة
\section*{شـيماء بار ياس}
shai.bader@yahoo.com
الجامعة العر اقية

في هذا البحث قدمنا تعريف الدالة ذات الدورة 3 في الحقة R وفي المثللي الايمن (او الايسر) (صفري , اذا كان d اشتقاق ذات الدورة 3 في R فان اما d=0 او u²=0 لكل u في
 تعميم اشثتقاق ذات الدورة 3 في R , فان δ دالة محايدة . أخيرا, قدمنا تعريف الدالة ذات الدورة 3 في الحقات المقتربة وبر هنا نظريات للحقات المقتربة اليسرى ذوات الدورة 3 مع الدوال ذات التنشاكلات ضد و(ذات التنـاكلات), ذات الدورة 3, للحصول على الحقلات المتبادلة.

الكلمات الرئيسية: الحلقة الاولية, الاششتقاق, تعميم الاشتّقاق الايمن, حلقة مقتربة اولية, حلقة مقتربة شبه اولية, الدوال ذات الدورة 2, ذات التشاكلات وذات التثشاكلات

