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Abstract 
In this article, the existence‟ and uniqueness‟ theorem of the solution of the generalized two 

dimensional „fractional‟ partial integro-differential equations (2DFPIDEs) have been proved. Then, 

the sequence of approximate solutions of the generalized 2DFPIDEs employing the variational 

iteration method (VIM) had been derived and proved and then we prove its convergence to the 

exact solution. Finally, illustrative examples are simulated using computer software Mathcad 15 

and then a comparison between the approximate results and „the exact solution are given‟, which 

discover its competence.     [DOI: 10.22401/ANJS.22.2.08] 
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1. Introduction: 

Fractional order partial differential‟ 

equations FOPDE, is a popularization of 

„classical integer‟ „order partial differential 

equations‟ are „increasingly‟ used to pattern 

problems in „fluid flow‟, „finance; and other 

areas‟ of „applications. Fractional; derivatives 

provide‟ „an excellent‟ writing for the 

characterization of memory‟ and inherited 

properties‟ of various problems and 

operations. 

Podlubny I. in 1999 [20] pointed that „Half-

order‟ „derivatives and integrals‟ proved to be 

more salutary for the formulation‟ of certain‟ 

electrochemical‟ problems than the classical‟ 

models. Fractional integration and 

differentiation operators are also used for 

extensions of the diffusion and wave 

equations, [20].  

Also, a great deal of effort has been 

expended over the last 10 years or so in 

attempting to find robust and stable numerical 

and analytical methods for solving FPDE of 

physical interest, such numerical‟ and 

„analytical‟ methods including finite difference 

method [9,21,8], Adomian decomposition 

method (ADM) [11–12,1,17], VIM 

[3,13,18,14], and homotopy perturbation 

method (HPM) [3,15,19]. The VIM and the 

ADM „have been‟ „extensively‟ used‟ to solve‟ 

FPDE, since they provide immediate and 

visible symbolic terms of analytic solutions, as 

well as numerical approximate solutions to 

both linear and nonlinear differential equations 

without linearization or discretization.  

Many „authors‟ have studied the numerical 

solution of various types of FIDEs and 

FPIDEs. For examples, the application of a 

backward Euler method to solve FPIDEs by 

Serna in (1988), Marcos in (1990) used FDM 

for solving nonlinear singular FPIDEs, 

(Saadatmandi & Dehghan, in (2011) used the 

Legendre collocation method to solve FIDEs, 

Zhu and Fan in (2013) studied nonlinear 

fractional-order Volterra „integro-differential‟ 

equations (IDEs) by employing second 

Chebyshev wavelet‟ operational‟ matrix „of 

fractional „integration‟ the main characteristic 

of this approach is that it reduced the IDEs 

into a nonlinear „system‟ of „algebraic‟ 

equations‟. Mahdy and Shwayyea in (2016) 

solved FPIDE by using two numerical 

methods such as least squares method and 

shifted Laguerre polynomials pseudo-spectral 

method, Wang and Zhu in (2016) used second 

Chebyshev wavelets to solve FPIDE a weakly 

singular kernel [7]. 

In this paper, we will study and solve 

numerically the 2DFPIDEs using the VIM, 

this study includes the statement and the proof 

of the iteration formula used to solve 

2DFPIDEs and then its convergence to the 

exact solution. 
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2. Basic Concepts 

In this department, we will give some basic 

definitions and properties of FO derivatives‟ 

and integrals related to the present work. 

 

Definition (1), [10]: 

Let   ,   -    be a function,  a positive 

real number,   the integer satisfying     
   , and   is the Euler gamma function. 

Then, the left‟ and the right Riemann-Liouville 

(R-L) fractional integrals‟ of order   are 

defined by: 
 

  
  ( )  
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 ∫ (   )    ( )  
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 ∫ (   )    ( )  

 

 
  

 

Definition (2), [10]: 

Let   ,   -    be a function,  a positive 

real number,   the integer satisfying     
   , the Caputo‟ fractional derivative‟ of 

order α is defined as follows: 
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Definition (3), [2]: 

A normed linear space is a vector space  , 

over   and function ‖  ‖     which 

satisfies: 

1- ‖ ‖           
2- ‖ ‖        . 

3- ‖  ‖  | |‖ ‖          . 

4- ‖   ‖  ‖ ‖  ‖ ‖         . 

 

Definition (4), [2]: 

Let        be a continuously 

differentiable function over an interval ,   -, 
where      is said to satisfy Liptischitz 

condition if there exists a constant     

(dependent on both function and the interval), 

such that: ‖ ( )   ( )‖   ‖   ‖, for 

every pair of points        
 

2.1 Properties of Fractional Derivatives and 

Integration: 

For    , the following property is 

satisfied [9]. 

 

1. If             and   is any 

function, then: 
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3. Problem Statement 
The statement of the considered problem of 

this paper is to solve the following 2DFPIDEs 

of fractional order       using the VIM,  
 

  
  (   )   (   )    

 
   

 
  (     (   )) 

 
 
 

 
  

 .................................. (1) 
 

where        (   )     with initial 

conditions: 
 

 (   )    ( )   ,   -   
 

where   is the kernel function,   is given 

function and   is the unknown real valued 

function for                 
  .Also   

 
 
  denotes the Caputo fractional 

derivative of order   and   
 

 
    

 
 
  denotes the 

R-L fractional order integral operators of order 

       , respectively and the domain of 

definition is given by: 
 

  *(   )             + 
 

4. Existence’ and Uniqueness’ of Solution: 

One of the most important tasks in this 

article is to find the approximate solution of 

2DFPIDEs, and hence we need to investigate 

first the existence and uniqueness theorem for 

the analytical solutions of the 2DFPIDEs. Due 

to this, several authors have paid more 

attention in the past to provide these theorems, 

for example, the fixed-point principles based 

on Banach fixed point theorem or the 

contraction mapping principle were used by 

Nemytskii in (1933) to establish various 

existence and uniqueness theorems for integral 

equations and in this work for 2DFPIDEs. In 

this department, we shall state and prove the 

existence‟ and uniqueness‟ theorem of the 

solution of the generalized 2DFPIDEs of an 

arbitrary fractional order derivative. 

Theorem 1: 

Consider the generalized 2DFPIDEs given 

by equation (1) over the region   
*(   )             + and suppose 
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that the kernel   satisfies Lipschitz condition 

with respect to   and constant  , such 

that   
 (   ) (   )

  (   ) 
. Then equation (1) has a 

unique solution. 

 

Proof: 

Apply   
 

 
          on the both sides 

of equation (1), and then using property (1) in 

section 2.1 

  
 

 
    

   (   )    
  (   )   
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and hence: 
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Therefore: 
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 (     (   ))  ............................................. (3)  
 

Now, let   (   )   (   )    
 (,   -  

,   -)be any two functions, which satisfies 

equation (1), and hence satisfy equation (3); 
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Now, subtracting equation (5) from equation 

(4) and carrying the supremum norm, get  
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because   satisfies Lipschitz condition, then: 
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By using the definition of the gamma function, 

equation (8) will be: 
 

‖       ‖  
 (   )   

 (   ) (   )
‖  (   )  

                                 (   )‖   ......................... (9) 
 

Therefore, upon taking the supremum value of 

  and   over  , we have:  
 

‖       ‖  
 (   )   

 (   ) (   )
‖  (   )  

                             (   )‖             
 

Since  
 (   ) (   )

  (   ) 
  then 

 (   )   

 (   ) (   )
    

 

which implies that the operator   is a 

contractive mapping and therefore by using 

Banach fixed point theorem it has a unique 

fixed point.  

Hence, equation (1) has a unique solution.     
 

To explain the applicability of the above 

theorem, consider the following example: 

 

Example 1: 

Consider the linear generalized 2DFPIDEs 
 

  
 

 
    (   )   (   )

   
   

 
    

    
 
 ,(  ) (   )- 

                     ..................... (10) 
 

where (   )  ,   -  ,   - 
Now the kernel   satisfies Lipschitz constant 

condition since it is differentiable with respect 

to   with constant 

     
(   ) ,   - ,   -

|
  

  
| 

    
(   ) ,   - ,   -

|  | 

 |   |    

Now, from theorem (1),           
         ,          and     and 

also: 
 

 (   ) (   )

  (   ) 
 

 (    ) (    )

          
         

It is clear that           i.e.,   
 (   ) (   )

  (   ) 
   which implies that by theorem 
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(1) the generalized 2DFPIDEs (10) has a 

unique solution.                                              ■ 

 

5. The VIM for Solving 2DFPIDEs: 

To illustrate the main aspects of the VI”M, 

we “consider” the following general nonlinear 

“ordinary differential equation in operator 

form 
 

 ( ( ))   ( ( ))   ( )   ,   -  
 

“where  ” is a liner operator and “  is a 

nonlinear operator respectively,    is a 

“nonhomogeneous term. According” to V‟IM, 

we can construct the correction “functional as 

follows:  
 

    ( )    ( )  ∫  (   )
 

  
  

{ (  ( ))   ( ̃ ( ))   ( )}   
 

where   i‟s a “Lagrange multiplier” [4,5,6,16] 

which can be identified optimally via 

variational theory,    is the     approximate 

solution, and   ̃  is considered as a restricted 

variation, i.e.,   ̃   . After “identification 

of Lagrange multiplier, the successive 

approximations     ( )       of the 

solution   can be readily obtained. 

Consequently, the exact solution will be of the 

form: 
 

 ( )     
   

  ( )  
 

Now, the variational iteration formulation 

to evaluate the approximate solution of 

2DFPIDEs given by equation (1) will be 

derived which is due to the derivation first the 

general Lagrange multiplier. 

 

Theorem 2: 

Consider the 2DFPIDEs given by equation 

(1) and let      
 (,   -  ,   -) be the 

approximate solution then the sequence of 

approximate solutions using the VIM are 

approximated by: 

    (   )    (   )    
 ,   

   (   ) 
 

 
   

  (   )    
 

  
 

 
 

 
  (     (   ))-  .......... (11) 

for         

 

 

Proof: 

Consider equation (1), which has the form 
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  (     (   ))“ 

using the VIM, the correction functional will 

be as follow: 

    (   )    (   )    
 , (   )*   
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 (     ̃ (   ))+-  ..................................... (12) 

 

We will approximate the fractional 

derivative   
 

 
  by the first derivative and 

hence 
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 (     ̃ (   ))+-  ..................................... (13) 
 

and by taking the first variation on “both sides 

of equation (13) with respect to    with the 

assumptions that    (   )    and 

  (   )   . 
 

The following equation is obtained 
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”

      (   )   (   )    .................................... (14) 
 

Therefore, upon using integration by parts 

with respect to  , we get: 
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” 

Therefore: 
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and as a result, using variational theory thee 

following necessary condition is obtained for 

an arbitrary      
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with initial condition  
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Solving equation (16) with initial condition 

(17), the following Lagrange multiplier is 

obtained 

 (   )     

Therefore, by substituting the value of   back 

into the correction functional (12), the 

following variational iteration formula is 

obtained:  
 

    (   )    (   )    
 ,   

   (   )   
 

 
    

 (   )    
 

 
   

 
 
  (      (   ))-                 ∎ 

 

6. Convergence of the VIM for Solving 

2DFPIDE: 

The VIM derived in theorem (2) may be 

used to solve a large number of problems 

involving approximation, which will converge 

rapidly to the exact solution, easily and 

accurately. For linear problems, the exact 

solution may be obtained by only one iteration, 

this is due to the fact that the Lagrange 

multiplier” can be exactly identified [7]. 

In this section, the following convergence 

theorem for the approximate solution obtained 

using the constructed VIM (11) will be stated 

and proved. 

 

Theorem 3: 

Let        
 (,   -  ,   -) be the 

exact and approximate solutions of equation 

(1) and (11), respectively. If “  (   )  
  (   )   (   )” and thee kernel   satisfies 

Lipschitz condition with constant   
 (   ) (   )

  (   ) 
  then the sequence of approximate 

solutions *  +           converge to the 

exact solution “ (   )”. 

 

Proof: 
The approximate solutions of equation (1) 

obtained using the VIM is given by:  
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Also,   is the exact solution of equation (1) 

and hence, it satisfies equation (12), “i.e. 
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applying the supremum norm on equation (19) 
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Using the definition of R-L fractional integral 

into equation (20), 
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If    , then: 
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                                                                ■ 

 

7. Illustrative Examples: 
In this section, two examples will be 

considered and simulated using the VIM (11) 

the first example for liner case, while the 

second one for nonlinear. 

 

 

 

Example 2: 

Consider the following linear generalized 

2DFPIDE    
  

   
 
  (   )                            
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    ,(  ) (   )-  ................. (25) 

 

the “initial condition:” 

 (   )    ................................................ (26) 
 

(   )  ,   -  ,   -For comparison purpose, 

the exact solution is given by  (   )   . By 

applying the VIM, and by using thee initial 

approximation as follows: 
 

  (   )                            √    
 

then, the first second and third approximate 

solution denoted by 

  (   )   (   )       (   )  are obtained. 

The approximate solution are computed for  

                   and 1,   ,   -    
   .comparison is then made with the exact 

solution where the values are listed in Figure 

1. From the result of Figure 1, the convergence 

and the accuracy of the result between the 

exact solution and approximate solution can be 

seen. It can be observed that the third 

approximation is in good agreement with exact 

solution 
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Fig.(1): The exact and the approximate solutions for example 2. 

 

Example 3: 
Consider the following nonlinear 

generalized 2DFPIDE 
 

  
   

 
  (   )                     
                 

   
 
   

    
 
 ,(  )   (   )-  

 ...................................... (27) 
 

with the initial condition: 
 

 (   )      ....................................... (28) 
 

Where (   )  ,   -  ,   -  For 

comparison purpose, the exact solution is 

given by  (   )    ”. By applying the VIM, 

and by employing with the initial 

approximation a follow: 
 

  (   )                                   ” 
 

then, for simplicity the first and second 

approximate solution denoted by “  (   )  

and   (   ) are obtained. The approximate 

solutions are computed 

for                           ,   -  
        They are compared is then made 

with the exact solution and the values are 

given in Fig.(2).  
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Fig.(2): Thee exact and the approximate solutions for example 3. 

 

Conclusions: 
In this paper the existence and uniqueness 

theorem of the solution of 2DFPIDEs is 

proposed, in which the proof have been 

utilized Banach fixed point theorem. The VIM 

for solving 2DFPIDEs is formulated and the 

correction functional involved is determined. 

From there, convergence theorem of the 

sequence of approximate solution to the exact 

solution is provided and proved depending on 

the error function. The obtained results of the 

considered of the illustrative examples shows 

the reliability an applicability of the VIM for 

solving complicated differential equation. 
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