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Abstract  
    The main purpose of the work is to apply a new method, so-called LTAM, which 

couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform 

(LT). This method involves solving a problem of non-fatal disease spread in a 

society that is assumed to have a fixed size during the epidemic period. We apply 

the method to give an approximate analytic solution to the nonlinear system of the 

intended model. Moreover, the absolute error resulting from the numerical solutions 

and the ten iterations of LTAM approximations of the epidemic model, along with 

the maximum error remainder, were calculated by using MATHEMATICA® 11.3 

program to illustrate the effectiveness of the method. 

 

Keywords: Iterative method, Laplace transform, epidemic model, approximate 
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النمهذج الهبائي طريقة التحهيل التكراري المهثهقة  لحل  
 

اريج صلاح محمد ،سنان هاتف عبد المجيد ،*ريم وليد حدين  

عراقال ،بغداد ،بغداد جاهعة ،ابن الهيثن ،التربية للعلوم الصرفة كلية، الرياضيات قسن  

 

 الخلاصة
والتي تقترن بطريقة التسيسي والأنراري  (LTAM) طريقة جديدة تدسىالغرض الرئيدي من العسل ىه تطبيق 

تتزسن ىذه الطريقة حل مذكلة انتذار السرض غير السسيت في  .(LT) مع تحهيل لابلاس (TAM) التكرارية
نطبق الطريقة لإعطاء حل تحليلي تقريبي للشظام  .مجتسع يفترض أن يكهن لو حجم ثابت خلال فترة الهباء

 LTAM تم حداب الخطأ السطلق الشاتج عن الحلهل العددية وتقديرات كسا  .للشسهذج السقرهد غير الخطي
لتهضيح فعالية  MATHEMATICA® 11.3 باستخدام برنامج عظمالخطأ الأ بهاقيالتقريبية للشسهذج الهبائي و 

 الطريقة
 

1. Introduction  

     The problem of the spread of non-fatal infectious diseases was discussed by Jordan [1] in 

1999 to understand the dynamic interaction of the epidemic in a society and try to control it. 

The prevalence rate is expressed in a linear system of equations, which determines the 

development of the disease and presented as:  
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where      is the population at risk of infection but not yet infected,      is the affected and 

non-isolated population, and       is the isolated or recovered population. Using many 

analytical and semi-analytical methods, the system was one of the most widely solved by a 

group of researchers, including Biaza r[2], Rafei [3], Batiha [4], Dogan [5], and Weli [6]. At 

the present time, some researchers combined iterative methods with one of the known 

transformations, such as Laplace Adomian decomposition method [7], homotopy perturbation 

transform method [8], Aboodh decomposition method [9], and Temimi and Ansari method 

with the Elzaki transformation [10]. The coupling of TAM and LT leads to an effective and 

fast method compared to the other methods. In this method, no perturbation or liberalization is 

desired and it is easily implemented because it does not require complicated calculations of 

non-linear terms, as in the Adomian method.  

2. Algorithm of the new method (LTAM)  

To clarify ideas of the proposed LTAM method, let us consider the following nonlinear 

ordinary differential equation 

                                                           (    )      ,                                  (2) 

with the initial condition 

                                                (3) 

where L is linear operator, N is a nonlinear operator, and g is a known function. 

By taking LT on both sides of Eq. (2) (where we referred to the Laplace transform with the 

symbol  ), we obtain  

                                   [       ]   [       ]   [    ],                                (4) 

Using the differentiation property of the LT, we obtain 

                                                    [       ]   [    ],                           (5) 

                                        
    

 
 

 

 
 [       ]  

 

 
 [    ],                                (6) 

By taking the inverse of LT on both sides of Eq. (6), we obtain 

                          [
    

 
]     [

 

 
 [       ]]     [

 

 
 [    ]],                             (7) 

According to the TAM, the solution of Eq. (2) can be found by a simple iterative procedure. 

At first, the TAM method is used to find the initial approximation, which can be achieved by 

solving 

                                               [
    

 
] +   [

 

 
 [    ]] ,                                          (8) 

Then, the next iteration will be 

                                                      [
 

 
 [        ]],                                        (9) 

After many iterations, the general form of the method is represented as  

                                                      [
 

 
 [        ]],                                      (10) 

3. The LTAM for Solving the Epidemic Model 

In this section, the epidemic model (1) with initial conditions  

                         
will be solved by LTAM method.   

By applying LT on both sides of the system of Eq.s (1), we obtain 

 [
  

  
]   [    ], 

                                               [
  

  
]   [   ]   [  ],                                                   (11) 
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]   [  ] , 

 

By using the differentiation property of the LT, we get 

          [    ], 
                                                       [   ]   [  ],                                            (12) 

          [  ] 
Hence, we simply get 

     
 

 
   

 

 
 [    ], 

                                         
 

 
   

 

 
 [   ]  

 

 
 [  ],                                            (13) 

     
 

 
   

 

 
 [  ] 

By taking LT as inverse, we have 

        [
 

 
  ]     [

 

 
 [    ]], 

                                             [
 

 
  ]     [

 

 
 [   ]]     [

 

 
 [  ]],                  (14) 

        [
 

 
  ]     [

 

 
 [  ]] 

According to the TAM, the solution of the system of Eq.s (1) can be found by simple a 

iterative procedure. Firstly, we find the initial approximation and this can be achieved by 

solving the following: 

         [
 

 
  ]     

                                          [
 

 
  ]    ,                                                 (15) 

         [
 

 
  ]     

The second approximation can be found by solving 

         [
 

 
  ]     [

 

 
 [      ]]=         

           [
 

 
  ]     [

 

 
 [     ]]     [

 

 
 [   ]]                     (16) 

         [
 

 
  ]     [

 

 
 [   ]]       

By the same way, we find the rest of the third, fourth, and fifth approximations 

         [
 

 
  ]     [

 

 
 [      ]]  

 

 
     

       
      

                                                                                 

         [
 

 
  ]     [

 

 
 [     ]]     [

 

 
 [   ]]   

 

 
       

      
    

 

 
     

       
      

                                                                                                  (17)                                                      

         [
 

 
  ]     [

 

 
 [   ]]  

 

 
       

      
     

         [
 

 
  ]     [

 

 
 [      ]]=

 

   
    

                      
                                                                                                        

         [
 

 
  ]     [

 

 
 [     ]]     [

 

 
 [   ]]

  
 

   
   

            
   

        
   

                    

        
        

      
                                                                                                         (18)                                                                                       
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 [   ]]   

 

    
   

             
   

      

   
   

                             
          

       
To confirm the accuracy of the solution, we compared the solutions obtained by using LTAM 

for 5-term approximation with the numerical solutions calculated using MATHEMATICA 

software. Moreover, we proposed the following error remainder functions for the epidemic 

model to verify the accuracy of the results: 

                       
 

 

  
 ∑       [ ∑      ∑     ]     

   
 
   

 
                                        (20) 

                       
 

 

  
 ∑       [ ∑      ∑      

   
 
   

 
   ]    ∑     ]     

                 (21) 

                        
 

  
 ∑        ∑     ]    

   
 
   ,                                                           (22) 

with the maximal error remainder parameter respectively , 

MERpn=max|       |                                                               (23)                                                                             

              0≤x≤1         

MERqn=max|       |                                                                                     (24)

   0≤x≤1   

MERrn=max|       |                       (25)              

              0≤x≤1   

4. Numerical Comparison and Simulation 

We take the parameter values (see [2]), as follows: 

      = Initial population of      who are susceptible. 

      = Initial population of      who are infective. 

      = Initial population of      who are immune. 

       = Rate of change of susceptible population to infective population. 

        = Rate of change of infective population to immune population. 

The values of the coefficients above will be offset in Eq.s (16), (17), (18), and (19). Then, we 

get the following results: 

         

                                                                                                                       (26) 

            

  =                       

                                                                                                    (27) 
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                                                                                      (29)                

                                                               
                                       
Figures 1, 2, and 3 illustrate the graphs of the results. The plots show the size of the 

population, which was constant during the period of the epidemic. The number of people 

infected with the infection increases but the number of people exposed to infection decreases, 

while we notice an increase in the number of immune people. When comparing the results 

obtained by using the LTAM method with the semi-analytical methods in previous studies, 

we note that the results are identical to the fifth term with VIM [3], DTM [4], and DJM [6], 

and identical to the sixth term with ADM [2]. 

 
Figure 1-Three terms approximation for                   Figure 2- Four terms approximation for     

                     p(t), q(t), r(t)                                                                    p(t), q(t), r(t)                

 

Figure 3- Five terms approximation for p(t), q(t), r(t). 
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Figure 4 Comparison between the curves of            Figure 5- Comparison between the curves 

of   the approximate p(t) by using LTAM                  the approximate q(t) by using LTAM  

and the numerical function for 0 ≤t≤10               and the numerical function for 0 ≤t≤10 

                 

 

 

 

 

 

 

 

 

                                     

 

 

Figure 6- Comparison between the curves of the approximate z(t)   by using LTAM  and the 

numerical function for 0 ≤t≤10 

  

To indicate the validation of the LTAM, Figures 4, 5, and 6 present the difference between the 

approximate solutions, which is created by LTAM, and the numerical solution.  

On other side, the absolute error resulting from the numerical method and the tenth iteration 

of the LTAM are calculated. We attain a good approximation, as shown in Table 1.     

 

Table 1-Absolute errors obtained by using a numerical method and LTAM for ten 

approximations 
ti pi-Np qi-Nq zi-Nz 

0 0 0 0 

1 3.58804801×10
-7

 9.635815346×10
-8

 2.624466475×10
-7

 

2 3.097099466×10
-9

 2.579191651×10
-7

 2.548220639×10
-7

 

3 8.032454861×10
-7

 1.06397777×10
-6

 2.607322891×10
-7

 

4 1.558973164×10
-7

 7.719740225×10
-8

 2.330947204×10
-7

 

5 2.949319073×10
-7

 6.484871662×10
-8

 2.300831881×10
-7

 

6 7.831758841×10
-7

 9.614238294×10
-7

 1.782479373×10
-7

 

7 9.059311878×10
-8

 2.925829783×10
-7

 2.019898506×10
-7

 

8 6.028532908×10
-7

 4.923535428×10
-7

 1.104997427×10
-7

 

9 7.934803869×10
-6

 8.412187384×10
-6

 4.773835194×10
-7

 

10 6.924430771×10
-5

 7.47748496×10
-5

 5.530541889×10
-6
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Figure 7- The maximum error remainder plots for the epidemic model problem by using the 

LTAM 

 

The logarithmic sketch of the maximum error remainder parameters MERn for n = 1 to 10 is 

explained in Figure 7, where an exponential rate of convergence can be noticed. 

 

Table 2-The residual errors obtained by LTAM solutions 
t Residual errorp Residual errorq Residual errorr 

0 0 0 0 

1        10
-9

 7.76305×10
-9

 4.78382×10
-9

 

2 5.29561×10
-7

 5.40947×10
-7

 1.13858×10
-8

 

3 4.50258×10
-6

 6.44414×10
-6

 1.94156×10
-6

 

4 6.42312×10
-5

 7.56359×10
-5

 1.14047×10
-5

 

5 3.68225×10
-5

 4.10924×10
-5

 4.26993×10
-6

 

6 2.72889×10
-3

 3.01795×10
-3

 2.89061×10
-4

 

7 1.75119×10
-2

 1.91747×10
-2

 1.66274×10
-3

 

8 6.79616×10
-2

 7.39966×10
-2

 6.03504×10
-3

 

9 1.96927×10
-1

 2.13825×10
-1

 1.68975×10
-2

 

10 4.62112×10
-1

 5.01524×10
-1

 3.94118×10
-2

 

 

Finally, if we compare LTAM with other numerical methods, we find that LTAM do not need 

to use any kind of truncation errors to estimate the accuracy of the approximate solution. 
There is also no need for selecting the step size of the subintervals over the whole interval in 

the LTAM. Additionally, we do not need to create any round-off errors. 

5. Conclusions  

In this study, an iterative method is offered to solve the nonlinear system of differential 

equations that control the problem of an epidemic model. This method is more featured and 

effective because it provides the analytical solution straightly without any discretion or 

linearity.  According to the figures, it has to be noted that the maximum error remainders are 

decreased when the number of iterations is increased. 

Numerical results of the TAM are measured with those of the numerical value calculated by 

using the MATHEMATICA program. 

When comparing the solution obtained by LTAM with those offered by some other methods, 

such as ADM, HPM, HAM, and VIM, it is appreciated that the approximate solutions 

acquired by the LTAM converge speedly without any restricted hypotheses. Thus, LTAM 

seems to ensure very reliable results with high accuracy. 
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