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ABSTRACT

The main purpose of this paper is to classify certain geometric structure, called k-set,
in a particular setting, namely the projective line of order sixteen PG(1,q"), q =
2, h = 4. The subsets of the line PG(1, 16), such the tetrads, the pentads, the hexads,
the heptads and the octads are classified. The basic tool is the fundamental theorem
of projective geometry; there is a unique projectivity of the projective line
transforming three points to any three other points. Each of these k-sets gives rise to
an error-correcting code that corrects the maximum possible number of errors for its
lengths.

INTRODUCTION
On PG(1,q), a (k; 1)-arc is just an unordered set of k distinct points
simply called a k-set which special case of a (k; 2)-arc that is a set of k
points no three of which are collinear . A 3-set is called a triad, a 4-set a
tetrad, a 5-set a pentad, a 6-set a hexad, a 7-set a heptad, an 8-set a octad,
a 9-set a nonad. A (k; 2)-arc in projective plane PG(2,q) is a set of k
points no three of which are collinear.
k-sets in PG(1,q) for q=23,45,78911,13,17,19 have been
classified; see [1,2,3]. We are looking at the line of order sixteen, as it is
the next in the sequence.
We answer the equestion: How many projectively inequivalent k-sets in
PG(1, q) are there and what is the stabilizer group of each one?
Associated to any topic in mathematics is its history. Arcs were first
introduced by Bose (1947) in connection with designs in statistics.
Further development began with Segre in (1954); he showed that every
(q + 1)-arc in PG(2,q) is a conic. An important result is that of Ball,
Blokhuis and Mazzocca showed that maximal arcs cannot exist in a plane
of odd order. In 1981 Goppa found important applications of curves over
finite fields to coding theory. As to geometry over a finite field, it has
been thoroughly studied in the major treatise of Hirschfeld 1979-1985
and of Hirschfeld and Thas 1991) and Hirschfeld, G. Korchmaros and F.
Torres (2007).
The 17 points of PG(1,16) are P(xy, x1), x; € Fyc. SO
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PG(1,16) = {Uy, = P(1,0)} U {P(x,1)|x €F;x}.

Each point P (x,, x;) with x; # 0 is determined by the non-homogeneous
coordinate x,/x,; the coordinate for U, is co. Then, with [F;, U {oo}, each
point of PG (1,16) is represented by a single element of [F;4 U {o0}. Thus

PG(1,16) = {P(t, 1)t €F;¢ U {oo}};
Here, P(c0,1) = P(1,0). A projectivity ¢ = M(T) of PG(1,16) is given
by Y = XT, where X = (x9,%1), Y = (yo,y1) and

a b
T = (C d).

Lets = y,/y, and t = xy/x4; then s = (at + ¢)/(bt + d). If Q; = P;¢
fori = 2,3,4 and P; and Q; have the respective coordinate t; and s;, then
¢ is given by

(s —s3)(s2—54)  (t—t3)(tz — ty)

(s =s)(s2—53) (t—1t)(tz —t3)

PREVIOUS RESULTS
Definition(1)[3]: A finite field is a field with only a finite number of
elements. The characteristic of a finite field K is the least positive integer
p, and hence a prime, such that
pz=z+--+z=0Forallz€eK.

p
Definition(2)[3]:The set denoted by IF,,, with P prime, consists of the
residue classes of the integers modulo P under the natural addition and
multiplication.
Definition(3)[3]: Let S and S* be two spaces of PG (n, K), A projectivity
B:S — S* is a bijection given by a matrix T, necessarily non-singular,
where P(X*) = P(X)B iftX* = XT,witht € K — {0}. Write 8 = M(T);
then B = M(AT) for any 4 in K — {0}. The group of projectivities of
PG(n, K) is denoted by PGL(n + 1, K).
Definition(4)[2]: A group G actsonaset AifthereisamapAX G — A
such that given g, g’ elements in G and 1 its identity, then
1. x1 = x,

2. (xg)g' = x(gg’) forany x in A.
Definition(5)[2]: The orbit of x in A under the action of G is the set
xG = {xgl|g € G}.

Definition(6)[2]: The stabilizer of x in A under the action of G is the
group

G, ={g € Glxg = x}.
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Definition(7)[2]: Let the group G act on the set A.
1. If y = xg, for x,y € A, then
) yG = xG;
. Gy = 87'G, 8.
2. |G| = G|/]xG].
Theorem(8)[3]: There is a unique projectivity of PG (1, q) transforming
any three points to any three other points.
Definition(9)[2]: An [n, k, d], code C is asubspace of V(n,q) = (F,)",
where the dimension of C is dim C = k, and the minimum distance is
d(C) =d =mind(x,y).
Definition(10)[2]: For any [n, k, d], code we have d < n — k + 1.

RESULTS AND DISCUSSION
1. The Algorithm for Classification of the k -Sets in PG (1, q)
On PG(1,16), a k-set can be constructed by adding to any (k — 1)- set
one point fromthe other g — k + 2 points. According to the Fundamental
Theorem of Projective Geometry, Theorem (2.5), any three distinct
points on a line are projectively equivalent; so choose a fixed triad A. A
4-set is formed by adding to A one point from the other g — 2 points on
PG(1,q); that is, from PG(1,q) — A = A€. A 5-set is formed by adding
to any tetrad B one point from the other g — 3 points on PG(1,q).The
stabilizer group Gy fixes B and splits the other g — 3 points into a
number of orbits; so, different 5-sets are formed by adding one point from
each different orbit. The procedure can be extended to construct
6,7,8,9, -, (%)-sets, for g isodd and (%)-sets, forgisevenin PG(1,q).
Let K and K'. be two pentads. To check they are equivalent as following
. calculate the transformations between them. By using Theorem (2.8),
Two 5-sets K and K 'are equivalent if K = K’ and S is given by a matrix
T and § = M(T) with M(AT) = M(T), A € F;, — {0}.Where T is a non-
singular 2 x 2 matrix. Also can be used to calculate the stabilizer group
of each k-set.
2. Preliminary to PG(1,16)
On PG(1,16), the projective line over Galois field of order 16, there are
17 points. The points of PG (1,16) are the elements of the set

Fi6 U {oo}

= {0,0,1, w, 02, 03, 0% 0, 0, ®, 0, ®, W% w!l, w2 w3, K | 2
=w*t+wt+l=wt+0?+l1=0+wi+1=0+w +1
=0l +w+l=0+0’+1=0?+0'+1=0®+1=0}
The order of the projective group PGL(2,16) is 17.16.15=4080. This is
the number of ordered sets of three points.

5
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In the following sections, the k-sets in PG(1,16), k = 3,---,8; are
classified by giving the projectively inequivalent k -sets with their
stabilizer groups.

3. The Triads

Let S be set of all different triads in PG(1,16). Then the order of S
Is|S| =17.16.15 = 4080 . Let A = {0, 0,1} be a triad which is one of
them. By computing the transformations between A and all the other
triads, we note that any triad is projectively equivalent to A. This gives
the following conclusion.

Theorem(1): On PG(1,16) there is precisely one triad, given with their
stabilizer group in Table 1.

Table-1: The triad on PG (1,16)

Symbol The triad Stabilizer
A {e0,0,1} _ .t

4.The Tetrads

To construct the tetrad in PG(1,16), it is enough to add one point from
each orbit that comes from the action of the projective group of the triad
G, on the complement of A. All orbits of the triad in Table 1 are given in
Table 2.

Table-2: Partition of PG(1,16) by the projectivities of triad

A Partition of A€
{o0,0,1} 1{w, w3, w*, 0!, w'? wl*}
2{w? 0w w’, 0 w’, w3}

3{ w> 0%

The total numbers of all orbits is 3; therefore 3 inequivalent tetrads can
be constructed in PG(1,16).

Table 2 gives the following conclusion.

Theorem(2): On PG(1,16), there are precisely three tetrads, given with
their stabilizer group in Table 3.
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Table-3: Inequivalent tetrads on PG (1,16)

Symbol The tetrad Stabilizer
B, AU {w} t+ w t+1
Ly X Zy = X
S <t+1> <a)14t+1>
B, AU {w?} t+w?  w?
Ly X Zy = X {—
2 X Z = () X ()
B AU {w®} w5 1
’ Ay =(—,—)
t't+1

5. The Pentads

The projective group G, splits B;“,i = 1,2,3 into a number of orbits. The pentads
are constructed by adding one point from each orbit to the corresponding tetrads. All
orbits are listed in Table 4.

Table -4: Partition of PG (1,16) by the projectivities of tetrads
B; Partition B;°
Bl {wz, w4, (1)12, (1)14}
{(1)3 w6 (1)10 (1)13}

NERODERWODNDE

The total numbers of all orbits is 10; therefore 10 pentads can be constructed in
PG(1,16). In Table 5 all equivalent pentads with their projective equations are listed.

Table-5: The equivalence of pentads

No. Equivalent pentads Projective equation
1 B; U {w3} - B, U{w®} (wt + w)
2 B; U {w?} > B, U {w} t
3 B, U {w3} - B, U {w?} w3/t
4 B, U{w3} > B, U{w®} | (w?t+ w?)/(w'?t+1)
5 B, U{w®} - B, U {w?} w?/(t+ 1)
6 B, U{w3} > B3 U {w} (wt + w)

Table 5 gives the following conclusion.
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Theorem(3): On PG(1,16), there are precisely four projectively distinct pentads
summarized in Table 6.

Table -6: Inequivalent pentads on PG (1,16)

Symbol | The pentad Stabilizer
C, B, U{w?} _ttw t+1
22X 2o = ) X )
C, B; U {w3} 1 =(t)
Cs B; U {w?®} _ o ttoe
Zy X 2y = () X (=)

Cy B; U {w'%} Geo

Remark(4): The group G¢, has 15 elements of order 2, 18 elements of order 3, and
26 elements of order 5, and it is non-abelian.

6. The Hexads

The projective group G, splits C;°,i =1,2,3,4 into a number of orbits. The hexads

are constructed by adding one point from each orbit to the corresponding pentads.
All orbits are listed in Table 7.

Table -7: Partition of PG (1,16) by the projectivities of pentads

C; Partition C;°
c, |1 {w3, 0, 0! w'*}
2. {w*, w8 w® w3}

w

{(A)S, (1)6, wll’ w12}

C, G, splits €, into 12 orbits of single points.

1. {wzl (1)4, w12’ (1)14}

2. {0)3, (1)6, 0)10, 0)13}

3 {0)5, (1)7, 0)9, (1)11}

C, {a), wz’ w3‘ w4, we‘ w7, a)8, w9, a)ll, w12, a)13, a)“}

The total numbers of all orbits is 19; therefore 19 hexads can be constructed in
PG(1,16). In Table 8 all equivalent hexads with their projective equations are listed.

Table-8: The equivalence of hexads

No. Equivalent hexads Projective equation
1 | ¢qu{w?} - C,u{n?} t

2 | GU{eo} - GGU{w?} | (wt)/(t+ o)
3 | GU{w®}- G u{wh (w®)/(t + w)
4 | C,U{w®} - C3U{w?} (t+ w)/w

5 | C,U{w’}> C,U{w} w?/(t + w®)
6 | C,U{w®} - C,U{wd} (0™t + 1)
7 | C,U{w’} > C3U{w®} (wt + w)

8 | C,U{w’} - C,U{w% w?/(t + w)
9 | C;V{w3} - C,u{w'?} tlw

10 | ¢, U {w*} - C, U {w'*} tlw

11 | C; U{w®} - C, U {w®} (w3t + 1)
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Theorem(5): On PG(1,16), there are precisely eight projectively distinct hexads

summarized in Table 9.

Table -9: Inequivalent hexads on PG (1,16)

Symbol | The hexad Stabilizer

E, €, U {0’} Z, = (w®/t)
E, | G U{w | Z=(t+1D/(0"t+1))
Es C; U{w®} | Z; = {(wt + w®)/(t + w))
E, CU{w} | Z, ={(t+w)/(t+1))
Es C, U{w’} Zs = ((t)/(t + ®*))
Ee C U{w?} | Z, = ((t + w*)/(w°t + 1))
E, |CU{w'l} 1 wt+ ot

53 =<1:+1’ t+w )
Eg C, U {w"} S =<t+a) 2)

T M4 w?'t

7.The Heptads

The projective group Gg, splits E;, i = 1,---,8 into a number of orbits. The heptads
are constructed by adding one point from each orbit to the corresponding hexads. All

orbits are listed in Table 10.

Table-10: Partition of PG (1,16) by the projectivities of hexads

E; Partition E;°
E, | 1. {w*, w'*} 2. {05 w!?} 3. {0 w'?}
4 {w’, w1} 5. {08 v} 6. {w®}
E, | 1 {03, 0%} 2. {w5 w’} 3. {0, 0}
4. {w®} 5. {0! w!3}6. {w!? w!*}
E; | 1 {w3, 03} 2. {w* 0!} 3. {wb wd}
4. {w’, w*} 5. {w®} 6. {w!® w'?}
E, | 1. {w? w3} 2. {w* w®} 3. {0, w%}
4. {w8 w'} 5 {0’} 6. {w!'? w'*}
Es | 1. {w? w0 w!'l, w!?}
2 {(1)5, w8, (1)9, wlO’ w13}
3. (o
Ee¢ | 1. {w? 0*} 2. {w® 0} 3. {w®}
4. {w’, w3} 5. {w? 0!} 6. {w!'!,w'?}
E, | 1. {w?, 0w w’}
2. {w“’, w8’ w9’ w12’ w13’ (1)14}
3. {w® 0}
Eg | 1. {w?, w5 wb w!® w'!, w*} 2. {0* 0w?} 3.{0’,ws v’}

There are 39 different orbits; therefore 39 heptads can be constructed in (1,16) . The
projectively distinct heptads with their stabilizer groups are given in the following

theorem.

Theorem(6): On PG(1,16), there are 10 projectively distinct heptads summarized in

Table 11.
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Table -11: Inequivalent heptads on PG(1,16)

Symbol | The heptad Stabilizer
F E; U{w"} Z, = (w*/t)
F, E; U {w®} I =(t)

F3 E;U{w®} | Z3 =({t)/(0"t+ w®))
E, E; U{w’} Zy = {(t+ w®)/(t + 1))
Fs E; U{w®) | Z, =((t + w)/(wt + 1))

Fe E; U {0} Z, = (w°/t)
F7 EZ U {(1)5} ZZ = (t + (l))
Fg E, U {w®}
De=(——,t+1
5 <w14t+a)3 D

Fy E,U{w’} | Z, = {(t + 0®)/(w'*t + 1))
Fig E,U{w®} | Z; = ((t+®)/(t+w?)

8. The Octads
The projective group G, splits F;,i = 1,---,10 into a number of orbits. The octads
are constructed by adding one point from each orbit to the corresponding heptads.
All orbits are listed in Table 12.

Table -12: Partition of PG (1,16) by the projectivities of heptads
F; Partition F;°
F; | L{w® 0™} 2. {0 w3} 3. {07, w!?}
4. {w® w1} 5. {w®, 0!}
F, Gr, splits F,“ into 10 orbits of single points.
F; | 1.{w* 0® 0w} 2. {0® w’ w'?}
3. {w’, w3 w4 {0}

F, 1.{w* 0w’} 2. {0° w°} 3. {wd w3}
4. {w!° w'*} 5. {w!!, w'?}
Fs L{w*Y o'} 2. {w® 0’} 3. {0’ o'?}
4. {0)7,(1)13} 5. {(1)10,(1)14}
Fy 1L{w* 0™} 2. {05 w'?} 3. {0 w'?}

4. {(1)7,(1)11} 5. {wS'wIO}

F, | 1L{w3w’} 2 {wbo''} 3 {w, o'}
4. {w® % 5. {w!? w'?}

Fy | {0305 05 0,00 ol 0% o3, u*)
Fy | 1.{w? 0%} 2 {0* 0’} 3. {0 w'*}

4 {wd w'® 5 {0 w3}

Fip | 1.{w? 0% o'} 2. {0* w!% w3}

3. {w® w!'? w!} 4. {w”}

There are 49 different orbits; therefore 49 octads can be constructed in PG(1,16) .
The projectively distinct octads with their stabilizer groups are given in the following
theorem.
Theorem(7): On PG(1,16), there are 11 projectively distinct octads summarized in
Table 13.
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Table 13: Inequivalent octads on PG (1,16)

Symbol | The octad Stabilizer
Hy F, U {w*} Z, = (w°/t)
H, Fi U {0%) Z, =(t+1)/(w'*t + 1))
H, F; U{w’} 1 =(t)
H, F; U {w®} I =(t)
Hg F U {w’} Z, ={(t + @) /(w°t + 1))
Hy F, U{w®} Z, = {(t + w®)/(0*?t + 1))
H, F, U{w®} Z, = {(t + w?)/ (0!t + 1))
Hy | F, U {w!%} [=(t)
H. F, U{o® t+ w3 t + w? t+w
9 v ZZXZZXZZ:(t+1>x<w14t+1>x(w13t+1>

Hy, |F;U{w'!} t t+wl!

53 = {3 5° )

wt+w? t+1
Hy, | FoU{w®} t+w® t+1
53 = <t+a)3'w10t+ 7

9.MDS Code of Dimension Two

From Definition (10), an [n, k, d], —code is maximum distance separable ( MDS)
whend =n—k +1.S0,ifk =2and d =n —10fan[n,k,d], —code, the code C
converts to a set K of n points on the projective line PG(1, q). In Table 14, the MDS

codes corresponding to the n-sets in PG (1,16) and the parameter e of errors corrected
are given.

Table-14: MDS code over PG(1,16)

n-set | : MDS code | e
Triad [3,22]16 |0
Tetrad | [4,23]16 |1
Pentad | [5,24];6 |1
Hexad | [6,2,5]14 |2
Heptad | [7,2,6]16 |2
Octad | [8,2,7]16 |3
Nonad | [9,2,8]¢ |3

If C has minimum distance d, then it can detect d — 1 errors and correct e =
[(d — 1)/2] errors, where |m] denotes the integer part of m:

d|112|3|4|5|/6|7]|8
e|0|0]1(1|2|2]|3]|3
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