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Abstract: In this paper, we find the degree of best approximation between a pair of a nearly 

intertwining polynomials, and a pair of a nearly intertwining splines to a non-negative function   

    ( )    (  )   in 
pL ," 
 , "10  p , we find the order of best a nearly intertwining approximation in 

the above terms. 
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1.Introduction:The weighted quasi normed 
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   Let    , so that                
      for          
   And we suppose (  )  are all set of non-

negative functions f on I= ],[ bb , and we 

will write a function f  which belongs to the  

 

same class  (  ) is said to be copositive. 

Ration estimates of the approximation of the 

restriction are given in terms  of 

)))(,()(( pnkn xfx   , in some 

inequality in this paper where 

221 1)(   nxnxn ,and

    ( )         ( )     ([6]). For      

[       ]  and 21 ,cc  are constants and   

|    | "Nearly intertwining approximation", in 

which  intertwining points are allowed to shift 

by an amount no larger than  (  )  (using 
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2. Notations and Definitions: 

   Let    (     |       |      )  where 

      and           ([6]). 

   And let      [  
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  Now we will write some important definitions 

in our work 
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  The "Ditzian-Totik modulus of smoothness" 

of ( )([6]): 
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   The degree of "almost intertwining 

polynomial" of )( f ([6]): 
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 The degree of "nearly intertwining polynomial 

approximation"of( )  with respect to  ([6]): 
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   From the definitions above we get for   
    ( )    (  )([6]): 

: 

  (̃       )    

  (̃          )      (̃     )           …(1 

 

 

3. Auxiliary Result: 

   In the following theorems we show that 

a"nearly intertwining approximation"by

  rpp 21, , a nearly intertwining 

polynomials has an order, |  |  
 
( ́ |  |   )    

and the generalization to        

  (  )  which has an 

order       
 
( ́    )     also a nearly 

intertwining approximation by 21,SS , from 

the order ( )  on the knot sequence{  }   

 
   a 

"nearly intertwining splines" has an 

order  |  |  
 
( ́ |  |   )      where  , both 

of the above dependent on (   )   
 

Theorem (1): 

Let       (  )    (  
 )  and        be two 

sub intervals of I .Then there exist         

and two polynomial 21, pp of degree k

 21, pp a nearly intertwining pair for f

)()()( 12 xpxfxp  on     with respect 

to  
*  +   that satisfies: 

 

                            (̃          )    
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   Where     dependent on  (   )   
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to )( f  on     of degree 1r , 
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 )  to prove (2) apply 
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 )  then  21,LL ,a nearly 

intertwining pair for f . 

   Define 2,1,)(  ixLp ii
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  Also there exist a nearly intertwining pair of 

polynomial   npp 21, , satisfy 

 )()()()( 2121 xLxLxpxp

 |  |‖ ́‖
    (  ) 

 

and there for 

)()( 21 xpxp      ( )  
 
( ́   ( ))     

Corollary:Suppose       ( )    (  ) 

1,10  kp ,there is a pair of " a nearly 

intertwining polynomials " 21, pp ,of degree 

r  to f  with respect to*  +   satisfies: 

i)  (̃          )          ( ́    )     

ii)  (̃        )          ( ́    )     

Where     dependents on       
Proof: 

i) By using (Theorem 1.6.3 [6]),and the result 

(5) then the prove is complete. 

ii)By the relationship (1) and the result (i) of 

this corollary we get the result. 

Theorem(2):Suppose      ( )    (  )  

   *                        

         +  Let{  }   

 
   is a single knot 

sequence, there is a pair of "a nearly 

intertwining spline" 21,SS , of degree 

2, rr on {  }   

 
   for f with respect to 
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Proof: Let there exist  a polynomials 

},{ 21 pp , of degree r , and interpolate f  at  

k  points at   
2

1
0],,[   bIb , 

(Theorem(2.3.4):[6]). By using differentiated 

in (theorem(2.1.2)[6]) in case 
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2

1
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 After the interlocking polynomials have been 

configured  intertwining ,with  the function 

f , which has a right approximation order, 

now we will merge these polynomials together 

in the form of  smooth spline 

approximants (      )   on {  }   

 
. If both   

]
2

1
,[ IbIb    , and       are non-

contaminated, then 
3P and 2P , overlap on      

which contains )(m interior knots from 

{  }   

 
   By  Beatsons Lemma  [4]),   a 

splines   ̅   has order r at    on {  }   

 
  which 

are associated with a polynomials 
3P  , 2P , in 

technique at points Ib  , Ib 
2

1
     

countinuously.     

   Furthermore, the draw of splines   ̅   it is 

located between the polynomials 
3P , 2P

    accordingly: 
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   In the same way, we can overlapping a 

polynomial pieces which fall within the 

periods contaminated intervals. The Spline 

pieces   ̅        check the same guess above with 

a slightly larger interval of      on the right-

hand side. 

   Now, we define the final spline 1S  over     as 

follows: 

   If there is only one polynomial 1P over 

     then we set 1S to 1P . If there are two 

polynomials overlapping on      must be a 

combination spline   ̅   set 1S to   ̅   We get 

from the above        (  )   on an interval 

],[ bbI  .By the same method we set 
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  |  |  , (see Lemma 

(2.3.1)[6]),can be compared to size. And each 

interval   ],[ bIb  ,denote contain 

more than )(m , such interval ((the value of 

)(m depends on the length of the original 

interval)).Therefore we can get the result from 

(7)and (8), that is 
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   Where     dependents on       
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