
Baghdad Science Journal Vol.8(2)2011

526

Development Binary Search Algorithm

Ragheed D. Salim*

Received 3, January, 2011

Accepted 22, May, 2011

Abstract:
 There are many methods of searching large amount of data to find one

particular piece of information. Such as find name of person in record of mobile.

Certain methods of organizing data make the search process more efficient the

objective of these methods is to find the element with least cost (least time).

Binary search algorithm is faster than sequential and other commonly used search

algorithms.

 This research develops binary search algorithm by using new structure called

Triple, structure in this structure data are represented as triple. It consists of three

locations

(1-Top, 2-Left, and 3-Right)

 Binary search algorithm divide the search interval in half, this process makes the

maximum number of comparisons (Average case complexity of Search) is O(log2 n)

(pronounce this "big-Oh-n" or "the order of magnitude"), if we search in a list consists

of (N) elements.

 In this research the number of comparison is reduced to triple by using Triple

structure, this process makes the maximum number of comparisons is O(log2 (n)/3+1)

if we search key in list consist of (N) elements.

Key words: Big Oh (A notation formally describing the set of all functions which

are bounded above by a nominated function).

Introduction:
 A table or a file is group of

elements, each of which is called a

record. Associated with each record is

a key, which is used to differential

among different records [1].For every

file there is at least one set of keys

(possible more) that is unique (that is,

no two records have the same key).

Such a key is called primary key. For

example, if the file is stored as an

array, the index within the array of an

element is a unique external key for

that element [1, 2].

A searching algorithm is an algorithm

that accepts an argument a and tries to

find a record whose key is a. The

algorithm may return entire record or,

more commonly; it may return a

pointer to that record. It is possible that

the search for a particular argument in

a table is unsuccessful; that is, there is

no record I the table with that

argument as its key [3].

 Binary search algorithm is faster

than sequential and other commonly

used search algorithms. This research

develops binary search algorithm by

using new structure called Triple

structure in this structure data are

represented as triple. It consists of

three locations (Top, Left, and Right).

 The advantage of a proposal

algorithm over a binary search is

astounding for large numbers, for an

array of a million elements, proposal

algorithm, O(log2 (n)/3)+1, will find

*University of Technology

Baghdad Science Journal Vol.8(2)2011

525

the target element with a worst case of

only 8 comparison. Binary search

O(log2 n), on average will take 20

comparisons to find the element.

Types of Search Algorithms :
 There are many types of search

algorithms, searching large amount of

data to find one particular piece of

information. This research shows the

algorithms related with proposal

algorithm.

1 Sequential Search:
 This simplest form of a search is

the sequential search. This search is

applicable to a table organized either

as an array. Let assume that k is an

array of n keys, k(0) through k(n-1),

and r an array or records, r(0) through

r(n-1), such that k(i) is the key of r(i).

Let assume that key is a search

argument. If to return the smallest

integer i such that k(i) equals key if

such an i exists and -1

otherwise[1,4,5,6] .

An example: Figure1 shows an array

(name of array is A), seven elements

long, containing numeric values. To

search the array sequentially, may use

the algorithm of sequential search. The

maximum number of comparisons is 7,

and occurs when the key we are

searching for is in A [7]. Average case

complexity of Search, is O(n), where n

is the size of array [4].

Fig. 1: An Array

The function for doing sequential

search for above example is as follows:

 int function Sequential Search (Array

A, int Lb, int Ub, int Key);

 begin

 for i = Lb to Ub do

 if A(i) = Key then

 return i;

 return -1;

 end;

2- Binary Search:
 A fast way to search a sorted

array is to use a binary search. The

idea is to find the element in the

middle. If the key is equal to that, the

search is finished. If the key is less

than the middle element, a binary

search on the first half is done. If it's

greater, a binary search of the second

half will be done [3, 5,6].

The advantage of a binary search over

a linear search is astounding for large

numbers. for an array of a million

elements, binary search, O(log2 n), will

find the target element with a worst

case of only 20 comparisons.

Sequential search, O(n), on average

will take 500,000 comparisons to find

the element [5,7].

The function for doing binary search in

figure 1 is as follows [7]:

 int function BinarySearch (Array

A, int Lb, int Ub, int Key);

 begin

 do forever

 M = (Lb + Ub)/2;

 if (Key < A[M]) then

 Ub = M – 1

 else if (Key > A[M]) then

 Lb = M + 1;

 else

 return M;

 if (Lb > Ub) then

 return -1;

 end;

Binary Search Tree:
 Search is straightforward in a BST.

Start with the root and keep moving

left or right using the BST property. If

the key we are seeking is present, this

search procedure will lead us to the

Baghdad Science Journal Vol.8(2)2011

526

key. If the key is not present, we end

up in a null link [9,10,11].

Fig. 2: An example of a binary

search tree

Triple Structure:
 A triple structure is a structure

consists of three locations first location

is called top, second location called left

and third location called right.

TOP

Left Right

Fig. 3: Triple Structure

 The maximum number is stored in

top, the number less than top is stored

in left, and the number less than left is

stored in right.

An example: figure 4 shows nine

elements represented in triple structure,

the key elements are:

80 90 70 50 60 40 30 20 10

 90 60 30

 80 70 50 40 20 10

Fig. 4: An example of triple structure

Proposed Algorithm:
 The idea is to look at the sorted

elements in descending order and

represented in triple structure, and find

the middle structure. If the key is equal

to TOP, the search is finished. If the

key is less than the TOP and the key is

greater than the Left, then compare the

key with Right, if equal the search is

finished. If the key is less than the TOP

and the key is less than the Left, a

binary search on the second half is

done. If it's greater, a binary search of

the first half will be done.

The algorithm for doing the proposed

algorithm search is as follows:

 Input: A List of elements,

Found=False and Key (the search key)

 Output: Position (such that

array[position]=Key)

Step1: Begin

Step2: Sort the elements in descending

order

Step3: Represent the elements in triple

structure

Step4: While (Lower<=Upper) and

(not found) Do

 Begin

 Find middle structure (mid

← (Lower + Upper) Div 2)

 If (Key = array[Top]) then

Key found /found is true/

 Else If (Key < array [Top])

And(Key > array [Left]) then

 if (Key = array [Right])

then Key found /found is true/

 Else If (Key < array [Top])

And (Key < array [Left]) then

 Upper ← mid + 1

 Else If (Key > array [Top])

then

 Lower ← mid - 1

Baghdad Science Journal Vol.8(2)2011

527

70

70

70

70

70

 Else

 Return step4

 End

Step5: If Lower>Upper then Key not

found

Step6: End

Explanation of the Proposal

Algorithm:

 To clarify of the proposed algorithm

we will take the following example that

regarding

 the following keys:

30 20 50 15 10 60 65 35 55

70 33 12 9 7 8

to find the key = 70

1- First step: sort the elements in

descending order

 70 65 60 55 50 35 33 30

20 15 12 10 9 8 7

2- Second step: representing the

elements in a triple structure

 1 2 3 4 5

 70 55 33 15 9

 65 60 50 35 30 20 12 10 8 7

 Lb Mid Ub

3-Third step: find middle structure

4-Fourth step: Lb<= Ub and not found

 Mid =(1+5)/2 =3

 Top[33] < 70 so move

Ub to (mid -1)

 1 2

 70 55

 65 60 50 35

 Lb Ub

5- Fifth step: Lb<= Ub and not found

 Mid =(1+2)/2 =2

 Top[55] < 70 so move Ub to (mid -

1)

 1

 70

 65 60

 Lb Ub

6- Sixth step: Lb<= Ub and not found

 Mid =(1+1)/2 =1

 Top[70] = 70 so found key

Results and Conclusions:
 Figure 5 illustrates growth rates for

proposed algorithm and binary search

algorithm, if we search in list consist of

(n) elements.

Fig. 5: results

Size of

list

(n)

Proposed

algorithm

O(log2

(n)/3)+1

binary search

algorithm

O(log2 n)

1000 4 10

5000 6 12

1000000 8 20

5000000 9 22

10000000 10 23

20000000 11 24

Baghdad Science Journal Vol.8(2)2011

528

 This research, introduces a new

structure called (Triple Structure) used

to implement the binary search

algorithm, this structure makes the

search processing faster than binary

search algorithm by reducing the

number of comparison to triple.

The triple structure is active and

efficient in data structure such as (Tree

Structure), and can use it in sorting

algorithms such as (Bubble Sort).

References:
[1] Yedidyal, L. and Aaron, M. T.

1998 "Data structures using C and

C++, Prentice-Hall, Second

Edition, India, :661.

[2] Sartaj, S., 2002, "Data Structures,

Algorithms, and Applications in

C++",. MCGraw-Hill, Second

Edition, U.S.A, pp814.

[3] Rebert, L. 2003 " Data Structures

and Algorithms in Java", McGraw-

Hill,First Edition, U.S.A pp 416.

"ْياكم انثياَاخ" . 2222عصاو. ،انصفاس[4]-

 .122نهطثاعح انعشاق داسانسفيش انطثعح انصاَيح,

[6] Manber, U. and Baeza, R. 2001,”

An Algorithm for String Matching

with a Sequence of Don’t

Cares”.Information Processing

Letters 37(3):133-136.

[6] Mehlhorn, K. 2005. Dynamic

Binary Search. SIAM J. Computing

8(2): 175-198.

[7] Thomas, N. 2009. "Sorting and

Searching Algorithms", second

Edition.Edition, U.S.A,PP305.

[8] Robert, N. 2006. "Generalized

Binary Search",IEEE Trans.

Inform. Theory, 52(2): 489–509 .

[9] Cormen, T. and Charles E.

2001,"Introduction to Algorithms",

McGraw-Hill ,Second Edition,New

York, pp 820.

[10] Tenenbaum,A.M and Augenstion,

M.J.,2000. “Data Structures Using

C++”, Prentice-Hall International,

Second Edition, India, pp543.

[11] Aho Alfred,V. and Jeffrey

D.U.,2003." Data Structures and

Algorithms ",Addison-Wesley,

Third Edition.U.S.A, PP682.

 تطوير خوارزمية البحث الثنائي

 *سالمرغيذ داود

 .انجايعح انركُٕنٕجيح*

 :الخـلاصة

ُْانك عذج خٕاسصيياخ ذسرخذو في انثحس عٍ عُصش يعيٍ في يجًٕعح يٍ انثياَاخ ارا كاٌ انعُصش يٕجٕد.

 يصلا ايجاد اسى شخص في سجم انًٕتايم.

ْزِ اٌ انٓذف يٍ ْزِ انخٕاسصيياخ ْٕ ايجاد انعُصش انًطهٕب تالم كهفح يًكُح)الم ٔلد(ٔ ذكٌٕ

 انخٕاسصيياخ اكصش كفاءج عُذيا ذكٌٕ انثياَاخ يشذثح ٔفك َسك يعيٍ.

(يٍ انخٕاسصيياخ انري ذحراض انى ٔلد لهيم في ايجاد (Binary Searchذعرثش خٕاسصييح انثحس انصُائي

 انعُصش انًطهٕب لآَا سٕف ذمهص عذد انًماسَاخ انى انُصف.

(ٔرنك يٍ خلال اسرحذاز ْيكم تياَي Binary Searchانصُائي)في ْزا انثحس ذى ذطٕيش خٕاسصييح انثحس

 (ذرًصم فيّ انثياَاخ عهى شكم شلاشي ٔيركٌٕ يٍ شلاز يٕالع Triple Structure9جذيذ يسًى انٓيكم انصلاشي)

 (Topانمًح) -2

 (Leftجٓح انيساس) -2

 (Rightجٓح انيًيٍ) -1

(في كم يماسَح ذمهص عذد انًماسَاخ انلاحمح انى انُصف ٔنٓزا Binary Searchاٌ خٕاسصييح انثحس انصُائي)

 .(Nعُذ انثحس في لائًح عذد عُاصشْا) O(log2 nفاٌ اكثش عذد نهًماسَاخ)يعذل انرعميذ(سيثهغ ذمشيثا)

(Triple Structureفي ْزا انثحس ذى ذمهيص عذد انًماسَاخ انى انصهس ٔرنك يٍ خلال اسرخذاو انٓيكم انصلاشي)

 .(O(log2(n)/3)+1ٓزا فاٌ اكثش عذد نهًماسَاخ سيثهغ ذمشية ٔن

