I-DOOR SPACES

Bushra Kadum Awaad* and Hadi Jaber Mustafa**

* Department of Mathematics, College of Education, Al-Mustansiryah

University, Baghdad, Iraq.

** Department of Mathematics, College of Science, Al-Kufa University, Al-Najaf-Iraq.

ABSTRACT

Let $(X,\, \tau)$ be a topological space and let I be an ideal on $(X,\, \tau),$ we call

 (X, τ, I) an I-topological space.

In this paper, we study I-door spaces with several properties of these spaces are proved.

المستخلص:

ليكن (X, τ, I) فضاء تبولوجي وليكن I مثالي في (X, τ) ، سوف نسمي الثلاثي (X, τ, I) فضاء تبولوجي I. فضاء تبولوجي هذا البحث درسنا الفضاءات البابية I وتم برهان عدة خصائص لهذه الفضاءات

1- INTRODUCTION

Let (X, τ) be a topological space, then topological is called a door space [3] if every subset of X is either open or closed, and as an examples:

 $(\Box$, $\tau_d)$ is a door space, where τ_d is the discrete topology on \Box . But $(\Box$, $\tau_u)$ is not a door space, where τ_u is the usual topology on \Box .

In this paper, we will study the I-door spaces, where I is an ideal on the topological space (X,τ) .

2- BASIC DEFINITIONS

In this section, we introduce and recall the basic definitions needed in this work.

2-1 Definition [1]:

Let (X, τ) be a topological space. An ideal I on (X, τ) is a non-empty collection of subsets of X, which satisfies the following two properties:

- (i) $A \in I$ and $B \subseteq A$ implies to $B \in I$.
- (ii) $A \in I$ and $B \in I$ implies to $A \cup B \in I$.

2-2 Remarks and Examples:

- (i) Let (X, τ) be a topological space . Let I be the collection of all finite subsets of X, then I is an ideal on (X, τ) .
- (ii) Let (X, τ, I) be an I-topological space and let $A \in I$, let $B \subseteq X$, then $A \cap B \in I$ (notice that $A \cap B \subseteq A$).
- (iii) Let (X, τ) be a topological space and let J be the collection of all compact subsets of X, then J is not an ideal on (X, τ) .

2-3 Definition:

Let (X, τ, I) be an I-topological space, w say that (X, τ, I) is an I-door space if every subset of X is either open or closed or belongs to I.

2.4 Remarks and Examples:

- (i) Every door space is an I-door space. In fact, let (X, τ) be a door space and let I be the collection of all subsets of X, then (X, τ, I) is an I-door space.
- (ii) Let (X, τ, I) be an I-door space, where $I = \emptyset$. Then (X, τ, I) is a door space and we write (X, τ) instead of (X, τ, I) .

3- MAIN RESULTS

In this section, we prove several results concerning door spaces and I-door spaces. Before, we state our first result, we recall the following definition.

3-1 Definition:

Let (X, τ) be a topological space, we say that X is extremely disconnected [2] if the closure of every open set is open.

3-2 Theorem:

For a topological space (X, τ) , the following conditions are equivalent:

- (1) (X, τ) is an extremely disconnected door space.
- (2) Every subset A of X is either open or both closed and discrete.

Proof:

 $(1) \Rightarrow (2)$. Assume that A is not open and assume that:

A' be the set of all limit points of $A \neq \emptyset$

Since X is a door space, then A is closed

Let $x \in A' \subseteq A$

Let
$$S = A^c \cup \{x\}$$

S cannot be open

But X is a door space, so S is closed

Now,
$$A^c \cup \{x\} = \overline{A^c} \cup \overline{\{x\}}$$

Hence
$$A^c \subseteq \overline{A^c} \subset A^c \cup \{x\}$$

But X is extremely disconnected

So $\overline{A^c}$ is open

So
$$A^c \subseteq \overline{A^c} \subseteq S$$

Thus, $A^c = \overline{A^c}$, which implies that A is open, which is a contradiction, so $A' = \emptyset$, which implies that A is closed and discrete.

(2) \Rightarrow (1). We need to show that X is extremely disconnected, let $A \subseteq X$ be open, then $\overline{A} = A \cup A'$

If
$$A' = \emptyset$$
, then $\overline{A} = A$ is open

If
$$A' \neq \emptyset$$
, then $(\overline{A})' \neq \emptyset$ and \overline{A} is open

(note that A is closed and discrete if and only if $A' = \emptyset$).

3-3 Corollary:

Let (X, τ) be an extremely disconnected topological space and let I be the ideal of all closed and discrete subsets of X, then the following conditions are equivalent:

- (1) (X, τ) is door space.
- $(2) A \notin \tau \Rightarrow A \in I$.
- (3) (X, τ, I) is an I-door space.

3-4 Definition:

Let (X, τ) be a topological space, we say that X is F-door space if every finite subset of X is either open or closed.

3-5 Remarks:

- (i) Every door space is F-door space.
- (ii) Every F-door space is a $T_{\frac{1}{2}}$ -space, [4], where (X, τ) is called $T_{\frac{1}{2}}$ if every singleton is either open or closed).
- (iii) Every T₁-space is F-door space, but not necessarily a door space.

Before we state our next result, we recall the following definition:

3-6 Definition, [2]:

Let (X, τ) be a topological space. Let $A \subseteq X$, we say that:

- (i) A is regular open if A = int cl A.
- (ii) A is regular closed if A = cl int A.

3-7 Theorem:

Let (X, τ) be a topological space, then the following conditions are equivalent:

- (1) X is discrete.
- (2) X is a regular door space, that is every subset of X is either regular open or regular closed.

Proof:

 $(1) \Rightarrow (2)$. Is trivial.

(2) \Rightarrow (1). Let $x \in X$. If $\{x\}$ is not regular open, then $\{x\}$ is regular closed.

So
$$\{x\} = c \text{ lint } \{x\}$$

Since int $\{x\} \neq \emptyset$

Then $\{x\} = int\{x\}$

Hence {x} is open

This shows that X is discrete.

3-8 Theorem:

Let (X, τ) be F-door space. Let I be the ideal of all closed and discrete subsets of X, then the following conditions are equivalent:

- (1) (X, τ) is a door space.
- (2) (X, τ, I) is an I-door space.

Proof:

 $(1) \Rightarrow (2)$. Is trivial.

 $(2) \Rightarrow (1)$. If $A \subset X$ is neither open, nor closed

Then $A \in I$

But X is F-door space

Then A is either open or closed.

4- REFERENCES

[1] J. Dontchev, "On Minimal Door Spaces and Minimal $T_{\frac{1}{2}}$ -spaces", Mathematical Proceeding of the Royal Irish Academy, 98 (2), 209-215, 1998.

- [2] J. L. Kelley, "General Topology", D. Van Nostrand Company, Inc., Princeton, New Jersey, 1955.
- [3] Hadi J. Mustafa, "Door Spaces", Journal of the College of Education, Al-Mustansiriyah University, 2002.
- [4] Hadi. J. Mustafa, " $T_{\frac{1}{2}}$ -Spaces", Journal of the College of Education,

Al-Mustansiriyah University, 2000.