
Ridha and Abdulhadi                                      Iraqi Journal of Science, 2013, Vol.54, No.1, Pp.174-181 

 174 

 
Unsteady Heat Transfer Analysis on The MHD Flow of A Second Grade 

Fluid in A Channel with Porous Medium 

 
Safa  R. Ridha* , Ahmed M. Abdulhadi  

Department of Mathematics , College of Science , University of Baghdad ,Baghdad, Iraq 

*safariadh@yahoo.com 

 

 
Abstract 

      The aim of this paper is to analyzed unsteady heat transfer for 

magnetohydrodynamic (MHD) flow  of a second grade fluid  in a channel with 

porous medium. The equations  which  was  used  to describe the flow  are the 

momentum and energy, these equations were written to get thier non dimentional 

form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical 

solutions for velocity and heat transfer fields. The effect of each dimensionless 

parameter upon the velocity and temperature distributions is analyzed and shown 

graphically by using MATHEMATICA package. 
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 الجريان اللا مستقر و تحميل انتقال الحرارة في حقل مغناطيسي لمائع من الرتبة الثانية
في قناة ذات وسط مسامي   

 

 أحمد مولود عبد الهادي ,*صفا رياض رضا
 العراق ,بغداد ,بغداد قسم الرياضيات, كمية العموم, جامعة

 
  خلاصةال

 مستقـر لمائع من الدرجة الثانية في قناةللا الجريان او رارة هو تحميل انتقال الح لبحثا االهدف من دراسة هذ    
هي  اللامستقر المعادلات التي استخدمت لوصف الجريان تأثٌر حقل مغناطٌسً. ذات وسط مسامي تحت

استخدمت طرٌقة هوموتوبً  .هذه المعادلات لنحصل على الشكل اللابعدي لهاة, كتبناوالطاق لحركةا تمعادلا

تأثٌر كل معلمة لابعدٌة على حقلً  .على الحل التحلٌلً لحقلً السرعة و انتقال الحرارة التحلٌلٌة لنحصل

 توزٌع السرعة و الحرارة حُلل ووُضح بٌانٌاً باستخدام برنامج ماثماتٌكا. 
  

 

1. Introduction 

    Within the past fifty years, many problems 

dealing with the flow of Newtonian and non-

Newtonian fluids through porous channels have 

been studied by engineers and mathematicians. 

The analysis of such flows finds important 

applications in engineering practice, particularly 

in chemical industries, investigations of such 

fluids are desirable. A number of industrially 

important fluids including molten plastics, 

polymers, pulps, foods and fossil fuels, which 

may saturate in underground beds, display non-

Newtonian behavior.  Examples, of such fluids, 

second grade fluid is the simplest subclass for 

which one can hope to gain an analytic solution. 

The MHD phenomenon is characterized by an 

interaction between the hydrodynamic and 

boundary layer electromagnetic field. The study 
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of MHD flow in a channel also has application 

in many devices like MHD power generators, 

MHD pumps, accelerators, etc. Some recent 

contributions in the field may be mentioned in 

[1,2,3 and 4]. The effect of wall porosity on the 

two dimensional laminar flow of a viscous 

incompressible fluid in a parallel-walled was 

first studied theoretically by Berman[3].  

Authors like Brady [5], Prodman [6],  and many 

others have extended Berman’s symmetric series 

solution.  The aim of this paper is to investigate 

the heat transfer analysis for (MHD) flow in a 

porous channel. The second grade fluid fills the 

porous space inside the channel. In the next 

section we had present the equations which are 

used to describe the Magnetohydrodynamics 

(MHD) flow and heat transfer effects in the 

channel with porous medium. The third section 

deals with the analytical solutions for velocity 

and temperature fields by using powerful 

technique Homotopy analysis method (HAM),  

which was developed by Liao [7] is employed to 

solve the problems for velocity and temperature 

fields. The fourth section concerns with the 

convergence of the solutions. In section 5, we 

present the graphical results and discussion. In 

the last section, we give concluding remarks on 

the results. 

 

2. Description of The Problem 

   We consider the unsteady, incompressible 

(MHD) flow of a second grade fluid in a channel 

of width H with porous medium. The x-axis is 

along the centerline of the channel, parallel to 

the channel surfaces and the y-axis is 

perpendicular to it. The porous surfaces are 

y= H/2 The flow is symmetric about both x-and 

y-axes. The fluid is either injected into the 

channel or extracted out at a uniform velocity 

V/2 (the velocity V corresponds to the 

suction and V for injection). The 

temperature at the centerline (y = 0) and the 

upper wall (y=H/2) are  respectively. 

A constant magnetic field is applied 

perpendicular to the channel walls and the 

electric field is taken zero. The induced 

magnetic field is neglected for small magnetic 

Reynolds number. It is assume that the pressure 

gradient zero. Under these assumptions the 

governing equations for MHD boundary layer 

flow as the following: 

Momentum Equation 

+ + = + 

+ + +

]                             (1) 

 Energy Equation 

   ( + + ) +                 

[ + + +  

                            (2) 

Where and  are the velocities components in 

x- and y- directions respectively,  is the 

density,  is the dynamic viscosity,  is the 

electrical conductivity,  is the porosity of the 

medium,  is the permeability of the 

medium,  is a constant magnetic field,  is 

the kinematic viscosity,  material parameter of 

a second grade fluid.  is a specific heat,  is 

the thermal conductivity. 

  We can write down the momentum and energy 

equations in non-dimensional form, through 

introducing the following new quantities: 

= v x ( )  , =   , 

  = 1- ,  

   T= + , =  

substituting  above quantities in Eqs. (1) and (2) 

respectively, we obtain: 

=0                                                          (3)   

                

with boundary conditions  

 = 0, = 0, 

= , = 0  

 

+ +
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=0                                                     (4) 

with boundary conditions   

=1, =                         

Where the respective values of Hartmann 

number M, the Reynold    number , Prandtl 

number Pr, Eckert number Ec, the 

parameter ,the porosity parameter  

are: =  , ,  =  ,  

, , = , 

= , =  

3. Solution of The Problems 

    To solve momentum and energy equations,  

we choose initial guesses and linear operators in 

the following form:   

        ( ) = ( 2 )                          (5) 

        ( ) = 2                               (6) 

        ( f )=                            (7) 

(q)=               (8) 

with      

( )         (9)  

  = 0 

                                      (10)   

  = 0                                                                          
In which ci [i=1-4]are constants 

Upon making use above definitions, we first 

construct the  zeroth - order deformation 

problems: 

(1-p) =  

                                        (11)     

= 0, = 0, 

= , = 0         (12) 

                                                               

(1-p) =   

(13) 

, =               (14)                                                                            

+

f  

     

 
(15) 

 

                                   (16)                        

Where [0,1] is an embedding parameter, 

and  are the auxiliary non zero parameters. 

Obviously for =0 and =1,we have: 

= ( ), 

=                                 (17)    

 = ( ), 

=                                  (18) 

  Now as p increases from 0 to 1 then  

varies from  to ,   so  does 

varies from ( ) to . Using Taylor’s 

theorem and Eqs. (17) and (18) we can write    

  (19) 

  (20) 

Where  

 

 
 

 the convergence of two series is strongly 

dependent  upon . Assume that   and    

Assume that  and  are chosen that these 
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series are convergent at =1, we have from 

Eqs.(19) and (20) that: 

                                                   

(21) 

                                                   

(22) 
Differentiating Eq.(11) and (13) m times with 

respect to p, then setting p=0, and finally 

dividing (11) and (13) by m ,we obtain the 

following mth-order deformation problems: 

 =   

                                   (23) 

= = = 

=0                                        (24)  

  =   

                                   (25) 

 = =0                          (26)     

 
                                    

 

  

  

       

 

 

 

      (27) 

= 

                                

  

 

 

  

                   (28)                       

Where  is defined by   

Upon making use of MATHEMATICA, the 

solution of  Eqs.(23) and (25) can be expressed 

in the form: 

                                                                    

(29)                                     

                                                                     

(30) 

Where and  is a coefficient for  

We obtain in fact the following explicit, totally 

analytic solution of the momentum and energy 

eqs.  

    

(31) 

      (32) 

 
4. Convergence of The HAM Solutions 

     As pointed out by Liao [7], the convergence 

region and rate of approximations given by 

homotopy analysis method are strongly 

dependent upon . Figure 1,2 portray the -

curves of the velocity and temperature profiles 

respectively. The range for admissible values of 

 for the velocity is  and for 

temperature it is -5 5. We see that the 

series given by Eqs. (31) and (32) converges in 

the whole region of  when . This 

value of  lie in the admissible range of . 

 

5.  Results and Discussion 

     Figures 3–16 have plotted in order to see the 

effects of , M, Pr, Ec, ,  , , , and   

on the velocity components f  and temperature 

components q. Fiqs. 3-7 are sketched in order to 

see the effects of  , M,  ,  and  on the 
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velocity component f. Figure 3, give the effect 

of Reynolds number  on the velocity 

component f.  It is found that f decreases 

when  increases. In Figure 4, it is found that f 

increases when M increases. Figure 5 depict the 

effect of α on f. It is found that f decreases as α 

increases. In Figure 6, it is found that f increases 

when  increases. Figure 7, depict the effect of  

on f. It is found that f initially decreases but it 

increases as  increases 
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                     Figure 1-  - curve for velocity at fourth-order approximation 

 

           15 10 5 0 5 10 15

600

400

200

0

200

400

 
 

 

                       Figure. 2-  - curve for temperature at fourth-order approximation 
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      Figure 3- Effect of e on fourth approximation for 

                      M = 1, α = 0.2,  = 0.2, = π/4 ,  = -0.3 
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     Figure 4- Effect of  on fourth approximation for 

                     e = 100, α = 0.2,  = 0.2, = π/4,  = -0.3 
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       Figure 5- Effect of  on fourth approximation for 

                e = 100, M=1,  = 0.2, = π/4 ,   = -0.3 
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      Figure 6- Effect of  on fourth approximation for 

                      e = 100, M=1, = 0.2, = π/4 ,  = -0.3 
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       Figure 7- Effect of  on fourth approximation for 

                       e = 100, M=1,  = 0.2 ,  = 0.2,   = -0.3 

 

Fiqures 8-16 are sketched in order to see the 

effects of  , M, Pr, Ec, ,  , , , and  

 on the temperature component q. Figure 8, 

give the effect of Reynolds number  on the 

temperature component q. It is found that q 

increases when  increases. In Figure 9, it 

is found that q  increases when M increases. 

Figures 10,11,12  have  the same effect of Ec, 

Pr and α  on q when compared with Figure.9. 

In Figure 13, It is found that q is constant 

when  increases. Figures 14,15 have the 

same effect of and  on q when compared 

with Figure 9. Figure 16, depict the effect of 

on q. It is found that q initially increases but 

it decreases as  increases. 
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   Figure 8- Effect of  e on fourth approximation for 

                   M = 1, Ec = 0.3, Pr = 0.3,  = 0.2, = 0.4, 

                   = 0.4,  = 0.2, = π/4 ,  = -0.3 

 

0.0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

  
 

   Figure 9 -Effect of  on fourth approximation for   

                  e = 100, Ec = 0.3, Pr = 0.3,  = 0.2, =  

                   0.4, = 0.4,  = 0.2, = π/4 ,  = -0.3 
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                                                  Figure 10- Effect of Ec on fourth approximation for  

                                                                          Re= 100, M = 1, Pr = 0.3,  = 0.2, = 0.4, 

                                                                          α2  = 0.4,  = 0.2, = π/4 ,  = -0.3 

 

                 

0.0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

 
    Figure 11- Effect of Pr on fourth approximation for 

                      Re = 100, M = 1, Ec = 0.3,  = 0.2, = 

                      0.4, α2= 0.4,  = 0.2, = π/4 ,  = -0.3      
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     Figure 12- Effect of  on fourth pproximation 

                        for Re = 100, M=1, Ec = 0.3,  =0.3  

                        = 0.4, α2 = 0.4,  = 0.2, = π/4,  = -0.3  
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      Figure 13- Effect of on fourth approximation for 

                    Re = 100, M = 1, Ec = 0.3,Pr = .3, ,   

    α2= 0.4,  = 0.2, = π/4 ,  = -0.3 
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   Figure 14- Effect of on fourth approximation for 

                     Re = 100, M = 1, Ec = 0.3,Pr =0.3 , α2 = 

                     0.4,  = 0.2, = π/4,  = -0.3 
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   Figure 15- Effect of  on fourth approximatio   

                      Re= 100, M = 1, Ec = 0.3,Pr=0.3, α1 =  

                      0.4,  = 0.4, = π/4,  = -0.3 
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    Figure16- Effect of  on fourth approximation  

                     for  Re = 100, M =1, Ec = 0.3,Pr =0.3 

                     , α4=0.4, = 0.4,  = 0.2,h=0.3 

  

6. Concluding Remarks 

     In this article, the unsteady heat transfer is 

analyzed for magnetohydrodynamic (MHD) 

flow of a second grade fluid  in a channel. The 

governing non-linear are solved  by using HAM. 

The effect of each physical parameter upon the 

velocity and temperature distributions are 

analyzed and are shown graphically. The results 

have been summarized as the following: 

I. The variation of  e on velocity and 

temperature distributions is  opposite. 

II. The effects of M and   on velocity and 

temperature distributions are similar. 
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