Using Silver Nano-Particles to Increase Efficiency Of Sterile Solution for in vitro Techniques

Nabeel K. Al-Ani *

* Biotechnology Dept/ College of science/ University of Al-Nahrain

Abstract:

This work was done by using explants cultured in MS medium supplemented with 3mg/l of NAA plus BAP, 30g/l sucrose beside different concentrations of silver nano particles 4,8,12 mg/l. to assess the efficiency of using these particles in control the infection percent.

The results indicate that healthy plants percent were increase from 45% to 100% in all treatments. However, in 4 mg/l treatment the explants were continued to grow better even after 28 days in culture. This is the first report on using silver particles in vitro technique especially in Iraq.

Key words: tissue culture, Blood leaf plant, sterilizing solution, MS medium

Introduction:

So many factors may limit micro-propagation of flowering plants. The most important limiting factor is in vitro contamination (e.g., fungal and bacterial infections).

There are however, some methods and chemical available to control these contaminations, but the efficiency of these chemical are either limited or toxic.

Antibiotics are also used in controlling internal bacterial contaminations (1).

However, they may affect the growth and response of explants and may induce resistance in bacteria.

Therefore, they are not suggested for using in plant tissue culture techniques (1). Mercury chloride (HgCl2) has been widely used to control infections in explants. HgCl2 is very toxic and should be used with high cautions (2).

Such chemicals are not only toxic for the explants and peoples working in this field but they may affect the environment. Therefore, finding an effective and safe substance for decontaminated of explants is very important, and that is what this paper aim to.

The term Nano-technology was first used by Japanese scientist “Taniguchi” at the university of Japan (3).

Nano-agriculture involves the employment of nano-particles in agriculture with the ambition that these particles will impart some beneficial effects to the crops.

Recently, confocal fluorescence image studies have revealed the capacity of single walled carbon nanotubes (SWNTs) to traverse across both the plant cell wall and cell membrane(4).

The study also pointed out that SWNTs can serve as effective nanotransporters to deliver DNA and small dye molecules into intact plant cells. There are also some reports on other nanoparticles as smart treatment-delivery systems in plants(4).

Nano – silver is new and non – toxic material which shows high capabilities in decontamination of microorganisms, e.g. fungus, bacteria, and viruses.

The detrimental effects of this chemical have been shown more than 600 microorganisms (5).

This capability of nano-silver is due to release of tiny particles of silver so it is able to destroy not only bacteria, fungus but also the viruses (6).

Corresponding Address:
Nabeel K. Al-Ani
Biotechnology Dept/ College of science/ University of Al-Nahrain
Email: nkalani54@yahoo.com
Materials and Methods:

Tissue culture techniques were flow according to (7).

Types and media preparation:
MS medium were prepared by dissolving 4.1g/l from a readymade sachets MS medium. After dissolving, this medium was supplemented with 3m/l NAA and BAP as growth regulators plus 30g/l sugar.

The medium was divided into three groups each with different concentration of silver nano particles bought from local market. 4, 8, and 12mg/l of silver nano particles were supplemented to each media.

The nano particles were dissolved in drops of distilled water for half an hour before used (8). The whole media were sterilized in autoclave at 121 °C for 15 minutes (9).

Explants sterilization:
5mm Stem cutting of Blood leaf plant Iresine herbstii Family Araceae were sterilized in 3% hypochloride for 15 minute.

Then, washed three times in sterilized distilled water 5 minutes each time. Some explants were soaked in the above nano - particles solution, the other were cultured directly in MS medium. (negative control).

Results and discussion:

Micro-propagation can offer great advantages over traditional methods. Callus from explants can give a rise to hundred explants within few months of callus initiation (10).

In experiment 1 figure one below the positive control treatment(which means culturing explants without Nano treatment) produced only 45% clean plants, however, the negative control (which cultured without autoclave or explants sterilized with nano particles only without hypochloride) the clean plant percent were about 5%.

This gives us indications that sterilize explants with nano- particles only will not be helpful for our experiment. Nevertheless, the contaminated vials noticed mostly in fungus without any bacterial contamination.

This may be because that Ag+ collapses the proton motive force on the bacterial membrane (11).

In Figure 2 and picture 1 below the growth of explants continued after 28 days in culture without any infections or dead explants. This gives us indication that plants stay healthy for long time in culture better than control treatment and gives high rate of biomass specially in 4mg/l (pic.1 below).
This may be due to the effect of Ag⁺ (12). The results indicate that the explants are completely clean even from internal infections.

There is only one more note that in negative control, vials there are some fungi infections with no bacterial symptoms. This may be due to a spherical assembly needles found on the surface of bacteria use to inject poison into their targets (12). These finding may give us new challenge to introduce new genes in simple and fast way.

This paper referred for the first time to use silver nano particles in helping to decrease bacterial infections at least in ornamental plants.

Figure 2: Healthy explants in MS medium supplemented with 4, 8, and 12 mg/l silver nano particles after 28 days in culture. N=12.

Picture 1: different growth of explants in MS medium supplemented with 4, 8, 12 mg/l silver nano particles after 28 days in culture.
References:

7. Toby M.Horn 1989: Plant tissue culture . Fralin Biotechnology Center Virginia Tech Blacksburg, VA 24061
10. Tony storr.1985. plant tissue culture .the association for science and education, Herts, AL10 9AA.

in vitro لزيادة كفاءة التعقيم في تقنية Sliver Nano- Particles

الخلاصة:

تم إجراء العمل باستعمال أجزاء نباتية زرعت على وسط MS جهز 위하여 3ملغم/لتر MS بالإضافة إلى 30 غم/لتر سكرور بالإضافة إلى BAP وNAA و 12 Silver Nano particle وتراكمات مختلفة من مادة 4,8,12,16 ملغم/لتر. وذلك لتقدير فعالية هذه المواد في التقليل من التلوث. أظهرت النتائج زيادة ملحوظة في نسبة النباتات غير المصابة من 45% إلى 100% في كافة المعاملات. بالإضافة إلى ذلك فإن النمو في النباتات ارتفع بنسبة 28 يوم بعد المعاملة خاصة في المعاملة 4 ملغم/لتر. وهذا البحث يعتبر الأول الذي يشير إلى إمكانية استعمال silver particles خارج الجسم الحي خاصة بالعراق.