@Article{, title={Effects of Ambient Temperature and Needle to Collector Distance on PVA Nanofibers Diameter Obtained From Electrospinning Technique}, author={A.R. Jabur and L.K. Abbas and S.M. Muhi Aldain}, journal={Engineering and Technology Journal مجلة الهندسة والتكنولوجيا}, volume={35}, number={4 Part (A) Engineering}, pages={340-347}, year={2017}, abstract={Electro spinning is regarded as an active technique for producing biomimetic scaffolds used in tissue engineering applications from synthetic and natural polymers. The technique used in this research gives the ability to produce bio-polymeric materials for fabricating engineered scaffold tissues by preparing (PVA) solution. Ambient temperature at (25, 30, 35, 40, 45 and 50 °C) and needle tip to collector distance with (4, 8, 12, 15, 20 and 22 cm) were studied to optimize the electrospun fibers (size and shape). The electrospun fibers topography were studied by scanning electron microscopy (SEM). Measurements were done for each (SEM) images and lead to determine the mean diameters size of the obtained fibers. Results showed that the average fiber diameter of the (PVA) electrospun decreased to the range (220–500 nm) without creation of any beads, fibers diameter decreased as ambient temperature increase to certain temperature at (45 °C) and retrain to increase at (50 °C) temperature, while increasing the distance of the needle tip to collector decrease the mean nanofiber diameter from (875 nm) at (4 cm) to (600 nm) at (22 cm).

} }