Flow Injection Spectrophotometric Determination of Thymol using 4-Aminoantipyrine and Copper(II) Nitrate

Mouayed Q. Al-Abachi* Nada Ali Al-Najjar**

Received 25, March, 2014
Accepted 19, May, 2014

Abstract:
Flow-injection (FI) spectrophotometric method has been developed for the analysis of thymol in pharmaceutical preparations. The method is based on organic coupling reaction between thymol and 4-amino antipyrine in the presence of alkaline medium to form an intense stable red color complex with copper nitrate that has a maximum absorption at 490 nm. Optimum conditions for determination of the drug was investigated .The calibration graph was linear over the range of 5-500 µg.ml⁻¹ of thymol . The limit of detection (LOD) and limit of quantification (LOQ) were 1.81 µg mL⁻¹ and 3.60 µg mL⁻¹ respectively .The proposed method was applied satisfactorily to the determination of thymol in mouth wash preparations. The procedure is characterized by its simplicity, accuracy and precision.

Key words: Thymol, Flow-injection Spectrophotometric determination, 4-Aminoantipyrine, copper nitrate.

Introduction:
Thymol is a 5-methyl-2-(methylethyl)phenol, C₁₀H₁₄O, whereas its chemical structure is shown in scheme (1) [1]:

Scheme(1): Structure of Thymol.

Thymol resembles phenol in its action, but owing to its insolubility in the fluids of the body it is absorbed much more slowly; it is also less irritant to wounds, while its germicidal action is greater than that of phenol, though less than that of naphthol . In alcoholic solution it penetrates the skin and produces local anaesthesia [1]. It is used as an antiseptic lotion and mouth wash (1 in 1000) [1]. A number of analytical methods have been reported for the determination of Thymol, these included high pressure liquid chromatography [2-4], liquid chromatography with electrochemical detection [5], gas chromatography [6-9], differential-pulse voltammetry [10], ultraviolet spectrometry [11] and colorimetric analysis [12].

The present study describes the development of FIA method based on a complexation reaction between Thymol, 4-Aminoantipyrine and copper(II)nitrate in ammonium hydroxide medium. The red complex product was spectrophotometrically measured at 490 nm. The method has been satisfactorily applied for the determination of Thymol in pure and mouth wash preparations, the reaction can be carried out in FIA method.

Materials and Methods:
Flow manifolds. Flow injection system . A two channels manifold was employed for continuous flow

*Department of Chemistry-College of Science-University of Baghdad
**Department of Chemistry-College of Science for Women-University of Baghdad-Baghdad-Iraq
injection spectrophotometric determination of thymol (Figure 1). Channel A was used to transport 4-aminoantipyrine and ammonium hydroxide. While copper(II) nitrate was transported via channel B. The sample was injected into the stream of channel A through the injection valve (Rheodyne, Altex 210, supelco-USA). Finally, the solutions were propelled by the peristaltic pump (Ismatec, labortechnik-Analytic, Glatbrugg-Zurich, Switzerland) which had individual flow rate of 0.75 ml/min using flexible vinyl tubing of 0.5 mm internal diameter, reaction coil (RC) with length of 100 cm and injection loop of 100 µl. The absorbance has been measured in quartz flow cell with 50 µl internal volume and 1 cm bath length at 490 nm using Shimadzu UV-Visible-260 digital double-beam recording spectrophotometer (Tokyo-Japan).

Fig.(1) : A schematic diagram of FIA manifold where (A) and (B), solution of a mixture of 4-AAP + NH₄OH and copper nitrate respectively; P= peristaltic pump; S= injection sample of thymol; IV= injection valve; RC=reaction Coil; FC=flow cell; W=waste; D=detector.

Reagents and materials:
Distilled water and analytical grade reagents were used throughout without further purification.

• A stock solution of Cu(II) nitrate (BDH, UK): 0.01 M was prepared by dissolving the required amount (0.2416 gm) of Cu(II) nitrate in distilled water in a 100-ml volumetric flask. Working solutions were prepared by appropriate dilution of the stock solution with distilled water.
• 4- Amino-antipyrine 4-AAP (BDH, UK): 0.1 M was prepared by dissolving 2.0324 gm of 4-AAP in 0.1 M ammonium hydroxide in a 100-ml volumetric flask. Working solutions were prepared by appropriate dilution of the stock solution with 0.1 M ammonium hydroxide.
• Ammonium hydroxide (BDH, UK): 0.1 M was prepared by appropriate dilution of the concentrated solution (3M) with distilled water in a volumetric flask.
• Standard thymol solution (1000 µg.ml⁻¹): was prepared by dissolving of 0.1 g of the pure compound (provided from BDH in 5 ml of ethanol and diluted to 100 ml in a volumetric flask with distilled water. More dilute solutions were prepared by simple dilution with distilled water.

Pharmaceutical preparation of Thymol.
Pharmaceutical preparations were obtained from commercial sources:-
1- Listerine – antiseptic (USA): containing 0.063% Thymol.
2- Breath Rx (mouth rinse – anti bacterial – USA) containing 0.060% Thymol.

Procedure for Mouth wash.
An aliquot of 20 ml of the above mouth wash preparation (Breath, Rx or Listerine) was dissolved in 5 ml of ethanol and was diluted to 50 ml with distilled water in a volumetric flask to obtain 240 µg.ml⁻¹ and 252 µg.ml⁻¹ of thymol in Breath, Rx and Listerine mouth wash respectively. Further appropriate solutions of mouth wash were made by simple dilution with distilled water.

General FIA procedure.
Working solutions of thymol in the range cited in Table (1) were prepared from the stock solution. A 200 µl
portion of drug solutions were injected into the stream of channel A (5x10^{-3} M of 4-AAP and 0.1 M of NH_4OH solution) and was then combined with stream of channel B (5x10^{-3} M of copper nitrate solution) with flow rate of 0.75 ml.min^{-1} in each channels (Fig.1). The red product absorbance was measured at 490 nm. A 100 μg.ml^{-1} of thymol solution was used for optimization of conditions.

Results and Discussion:
Thymol react with 4-AAP and copper nitrate in the presence of ammonium hydroxide at room temperature to give a red colored complex. The absorption spectra of the colored product against reagent blank in the range of 300-700 nm are illustrated in Figure(2). The absorption shows a maximum at 490 nm for Thymol complex whereas the reagent blank gives no absorption at this wavelength and was used in all subsequent experiments.

![Absorption spectra of the colored dye formed against blank, and blank against distilled water](image)

Fig. (2): Absorption spectra of the colored dye formed against blank, and blank against distilled water

The FIA configuration used to determine Thymol was designed to provide different reactions condition for magnifying the absorbance signal generated by the reaction of Thymol with 4-aminopyrine and copper (II) nitrate in the presence of ammonium hydroxide. Maximum absorbance intensity was obtained when the sample was injected into a stream of a mixture of 5x10^{-3} M of 4-AAP and 0.1 M of NH_4OH solution and then combined with a solution of 5x10^{-3} M of copper nitrate.

The effect of chemical parameters.

Concentration of NH_4OH.
The effect of different concentrations of ammonium hydroxide were studied in the range of 0.01–0.5M. and in the presence of 5x10^{-3}M 4-AAP and 5x10^{-3}M solution of copper nitrate. A concentration of 0.1M gave a highest absorbance and was chosen for further use (Figure 3).

![Effect of NH_4OH concentration](image)

Fig. (3): The effect of NH_4OH concentration

Concentration of 4-AAP.
The effect of various concentration of 4-AAP solution was investigated in the range of 1x10^{-3} – 1x10^{-2} M and in the presence of 0.1 M ammonium hydroxide and 5x10^{-3}M of copper nitrate solution . A concentration of 5x10^{-3}M of 4-AAP gave a highest absorbance and was chosen for further use. The results are shown in Figure (4).
The concentration of Cu (II) nitrate:
The effect of different concentrations of copper (II) nitrate solution was studied in the range of 1×10^{-3} – 9×10^{-3} M. A concentration of 5×10^{-3} M gave a highest absorbance and was chosen for further use (Figure 5).

The effect of manifold parameters:
The physical parameters which are studied under the optimized reagent concentrations were the flow rate, the injected sample volume and the reaction coil length. Coil length is an essential parameter that affected on the sensitivity of the colored reaction product and was investigated in the range of 25–250 cm. The result obtained showed that a coil length of 100 cm was adequate to create an efficient mixing of both streams and gave highest absorbance as shown in (Figure 6) and were used in all subsequent experiments.

The effect of flow rate on the absorbance of the red product was investigated in the range of 0.5-2 ml min$^{-1}$. The results obtained (Figure 7) indicated that a total flow rate of 1.5 ml min$^{-1}$ (0.75 ml min$^{-1}$ in each channel) gave the highest sensitivity.

The results of investigating the effect of the injected sample volume revealed that an injected sample of 200 µL was optimum and gave the highest absorbance (Figure 8).
Stoichiometry of the reaction:

It is apparent from the literature [13] that a mole ratio of phenolic drug : 4AAP was 1:1 forming a new ligands having low absorbance. The absorbance sensitivity has been increased by its reaction with Cu(II) to give an intense colored complex. The stoichiometry of the reaction of thymol with 4-AAP and Cu(II) was performed by mole ratio method [14]. The results obtained (Figure(9) and Figure (10)) indicated that the colored complex with stoichiometry ratio of 2:1 [4-AAP-thymol] ligand : Cu(II) and were in agreement with those obtained recently by the reaction of similar phenolic drugs such as sulbutanol, amoxicillin and pyridoxine hydrochloride [15].

The proposed reaction sequence based on the above results and literature [13,15] is shown in scheme (2).
Analytical characteristics of the proposed spectrophotometric method:

For the proposed method, a calibration graph was obtained by the procedure described previously and a series of standard solutions were analyzed in triplicate to test the linearity. The slope (a) and the intercept (b) were determined and are included in Table(1). The accuracy and precision of the proposed method was tested by analyzing five replicate of Thymol using the proposed method for three different concentration of Thymol. The values of relative standard deviation RSD% and relative error E_rel % are summarized in the same table. These values indicated a high accuracy and precision of the proposed method. The limit of detection (LOD) was determined by using the ratio of the standard deviation (SD) of the blank with respect to water and the slope of the calibration graph multiplied by a factor of three.

Table(1): Analytical characteristics of the proposed FIA spectrophotometric method

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amax (nm)</td>
<td>490</td>
</tr>
<tr>
<td>color</td>
<td>red</td>
</tr>
<tr>
<td>Linear range (µg mL⁻¹)</td>
<td>5-500</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.9975</td>
</tr>
<tr>
<td>Regression equation</td>
<td>y=0.0014x+0.0618</td>
</tr>
<tr>
<td>Limit of detection (LOD)</td>
<td>1.81</td>
</tr>
<tr>
<td>LOQ(s/n=3) (µg mL⁻¹)</td>
<td>3.60</td>
</tr>
<tr>
<td>Limit of quantitation</td>
<td>5.67</td>
</tr>
<tr>
<td>Relative standard deviatin RSD%</td>
<td>< 0.87</td>
</tr>
<tr>
<td>Average recovery</td>
<td>99.85</td>
</tr>
<tr>
<td>Sample frequency per hour</td>
<td>65</td>
</tr>
</tbody>
</table>

Table (2): Application of the proposed for the determination of Thymol in mouth wash

<table>
<thead>
<tr>
<th>drug</th>
<th>Conc. (µg mL⁻¹)</th>
<th>E%</th>
<th>Rec.%</th>
<th>RSD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listarine</td>
<td>40</td>
<td>+0.24</td>
<td>100.24</td>
<td>0.901</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>-0.15</td>
<td>99.85</td>
<td>0.749</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>+0.06</td>
<td>100.06</td>
<td>0.337</td>
</tr>
<tr>
<td>Breath.Rx</td>
<td>50</td>
<td>-0.55</td>
<td>99.45</td>
<td>1.201</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>+0.25</td>
<td>100.25</td>
<td>0.807</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>+0.65</td>
<td>100.65</td>
<td>0.920</td>
</tr>
</tbody>
</table>

* for five determinations

Table (3): Comparison of the proposed and official methods for the determination of Thymol

<table>
<thead>
<tr>
<th>Mouth wash samples</th>
<th>Proposed FIA method</th>
<th>Official method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recovery%*</td>
<td>RSD %*</td>
</tr>
<tr>
<td>Listarine</td>
<td>100.05</td>
<td>0.662</td>
</tr>
<tr>
<td>Breath.Rx</td>
<td>100.11</td>
<td>0.976</td>
</tr>
</tbody>
</table>

* for five determinations

Conclusion:

The results obtained confirm that the proposed method is simple, economical with reasonable precision and accuracy for the determination of Thymol. The optical parameters and statistical comparison justify this method for application in routine drug estimation in pure and dosage form. Also, the procedure does not involve any critical reaction conditions or tedious sample preparation steps. So, the recommended method is well suited for the assay and evaluation of Thymol in mouth wash preparation and can also be considered as a general method for the quantification of Thymol. In comparison of the other methods [2-12] with FIA procedure, the later is more convenient than the former method because of its speed (sample through-put of 65 injection h⁻¹) and wider linear range of the calibration graph. F- and t- test at 95% confidence level[16] showed that there was no significant difference between the proposed method and the standard
Bp method during its application to the analysis of mouth washes samples Table (2 and 3).

References:

الخلاصة:

يتضمن البحث تطوير طريقة طيفية جديدة وبسيطة للتقدير الكمي لمقادير ضئيلة من الثايمول في المحاليل المائية وغسول الفم باستخدام تقنية الحقن الجرياني. تعتمد الطريقة على تفاعل الأزدواج للثايمول مع كاشف 4-امينوانتي بايرين في وسط قاعدي حيث ي تكون معقد ذائب في الماء ذو صبغة حمراء بوجود فلز النحاس. وتظهر منحنى الامتصاص مقابل التركيز بقانون بير ينطبق ضمن مدى التركيز 5-500 ميكروغرام.ملل من الثايمول، وكانت قيم حد الكشف وحد الكمية 1.81 و 3.60 ميكروغرام.ملل من الثايمول على التوالي وتم دراسة الظروف المثلى للتفاعل وجميع المتغيرات الكيميائية والفيزيائية بدقة، حيث أظهرت الطريقة نجاحها في غسول الفم الحاوي على الثايمول.

الكلمات المفتاحية: ثايمول، الحقن الجرياني، تقدير طيفي، 4-امينوانتي بايرين، نترات النحاس.