On Fully \((m,n)\)-stable modules relative to an ideal \(A\) of \(R^{n\times m}\)

Muna J. M. Ali*

Received 3, April, 2014
Accepted 29, June, 2014

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Abstract:
Let \(R\) be a commutative ring with non-zero identity element. For two fixed positive integers \(m\) and \(n\). A right \(R\)-module \(M\) is called fully \((m,n)\)-stable relative to ideal \(A\) of \(R^{n\times m}\), if \(\theta(N) \subseteq N + M^mA\) for each \(n\)-generated submodule of \(M^m\) and \(R\)-homomorphism \(\theta : N \rightarrow M^m\). In this paper we give some characterization theorems and properties of fully \((m,n)\)-stable modules relative to an ideal \(A\) of \(R^{n\times m}\), which generalize the results of fully stable modules relative to an ideal \(A\) of \(R\).

Key words: fully \((m,n)\)-stable modules relative to an ideal \(A\) of \(R^{n\times m}\), \((m,n)\)-multiplication modules and \((m,n)\)-quasi injective modules.

Introduction:
Throughout, \(R\) is a commutative ring with non-zero identity and all modules are unitary right \(R\)-module. We use the notation \(R^{m\times n}\) for the set of all \(m\times n\) matrices over \(R\). For \(G \in R^{m\times n}\), \(G^T\) will denote the transpose of \(G\). In general, for an \(R\)-module \(N\), we write \(N^{m\times n}\) for the set of all formal \(m\times n\) matrices whose entries are elements of \(N\). Let \(M\) be a right \(R\)-module and \(N\) be a left \(R\)-module. For \(x \in M^{km}\), \(s \in R^{m\times n}\) and \(y \in N^{nk}\), under the usual multiplication of matrices, \(xs\) (resp. \(sy\)) is a well defined element in \(M^{km}\) (resp. \(N^{nk}\)). If \(X \in M^{km}\), \(S \in R^{m\times n}\) and \(Y \in N^{nk}\), define

- \(\ell_{M^{km}}(S) = \{ u \in M^{km} : us = 0, \forall s \in S \}\)
- \(\gamma_{N^{nk}}(S) = \{ v \in N^{nk} : vs = 0, \forall s \in S \}\)
- \(\ell_{R^{m\times n}}(Y) = \{ s \in R^{m\times n} : sy = 0, \forall y \in Y \}\)
- \(\gamma_{R^{m\times n}}(X) = \{ s \in R^{m\times n} : xs = 0, \forall x \in X \}\)

We will write \(N^n = N^{lxn}\), \(N^n = N^{nxl}\). Fully stable module relative to an ideal have been discussed in [1], an \(R\)-module \(M\) is called fully stable relative to an ideal, if \(\theta(N) \subseteq N + MA\) for each submodule \(N\) of \(M\) and \(R\)-homomorphism \(\theta : N \rightarrow M\). It is an easy matter to see that \(M\) is fully stable relative to an ideal, if and only if \(\theta(xR) \subseteq xR + MA\) for each \(x\) in \(M\) and \(R\)-homomorphism \(\theta : xR \rightarrow M\). An \(R\)-module \(M\) for two fixed positive integers \(m\) and \(n\) is called fully \((m,n)\)-stable relative to an ideal \(A\) of \(R\), if \(\theta(N) \subseteq N + M^nA\) for each \(n\)-generated submodule of \(M^m\) and \(R\)-homomorphism \(\theta : N \rightarrow M^m\). In this paper, for two fixed positive integers \(m\) and \(n\), we introduce the concepts of fully \((m,n)\)-stable modules relative to an ideal \(A\) of \(R^{n\times m}\) and \((m,n)\)-Baer criterion relative to an ideal \(A\) of \(R^{n\times m}\) and we prove that an \(R\)-module \(M\) is fully \((m,n)\)-stable relative to an ideal \(A\) of \(R^{n\times m}\) if and only if \((m,n)\)-Baer criterion relative to an
ideal holds for \(n \)-generated submodules of \(M^m \).

1. Results:

Definition 1.1: An R-module M is called fully (m,n) -stable relative to an ideal A of \(R^{m\times n} \), if \(\theta(N) \subseteq N + M^n A \) for each \(n \)-generated submodule N of \(M^m \) and \(R \)-homomorphism \(\theta : N \to M^m \). The ring R is fully (m,n) -stable relative to an ideal, if R is fully (m,n) -stable relative to an ideal as R-module.

It is clear that M is fully (1,1)-stable relative to ideal, if and only if M is fully stable relative to ideal.

It is an easy matter to see that an R-module M is fully (m,n)-stable relative to ideal, if and only if it is fully (m,q)-stable relative to ideal for all \(1 \leq q \leq n \) , if and only if it is fully (p,n)-stable relative to ideal for all \(1 \leq p \leq m \), if and only if it is fully (p,q)-stable relative to ideal for all \(1 \leq p \leq m \) and \(1 \leq q \leq n \).

In [2], an R-module M is called fully-stable, if \(\theta(N) \subseteq N \) for each cyclic submodule N of M and \(R \)-homomorphism \(\theta : N \to M \). An R-module M is called fully (m,n) -stable, if \(\theta(N) \subseteq N \) for each \(n \)-generated submodule N of \(M^m \) and \(R \)-homomorphism \(\theta : N \to M^m \) [3]. It is clear that every fully (m,n)-stable module M is a fully (m,n)-stable relative to non-zero ideal A of R for this follows from the fact \(\theta(N) \subseteq N + M^n A \).

An R-module M is fully (m,n)-stable relative to an ideal A of \(R^{m\times n} \), if and only if for each \(\theta : N(\sum_{i=1}^{n} \alpha_i R) \to M^m \) (where \(\alpha_i \in M^m \)) and each \(w \in N \), there exists \(t = (t_1, \ldots, t_n) \in R^n \) such that \(\theta(w) = \sum_{i=1}^{n} \alpha_i t_i + AM^m = (\alpha_1, \ldots, \alpha_n) t^T + M^mA \), if \(r = (r_1, \ldots, r_n) \in R^n \), then \(\theta((\alpha_1, \ldots, \alpha_n) r^T) + M^mA = (\alpha_1, \ldots, \alpha_n) t^T + M^mA \).

Proposition 1.2: An R-module M is fully (m,n)-stable relative to an ideal A of \(R^{m\times n} \), if and only if any two \(m \)-element subsets \(\{\alpha_1, \ldots, \alpha_m\} \) and \(\{\beta_1, \ldots, \beta_m\} \) of \(M^n \) such that \(\beta_j \in \sum_{i=1}^{n} \alpha_i R + M^mA \), \(\forall j = 1, \ldots, m \) implies \(\gamma_{\alpha_1} \{\alpha_1, \ldots, \alpha_m\} \subset \gamma_{\beta_j} \{\beta_1, \ldots, \beta_m\} \). Define \(f : \sum_{i=1}^{n} \alpha_i R \to M^m \) by \(f(\sum_{i=1}^{n} \alpha_i r_i) = \sum_{i=1}^{n} \beta_j r_i \).

Let \(\alpha_i = (a_{i1}, a_{i2}, \ldots, a_{im}) \). If \(\sum_{i=1}^{n} \alpha_i r_i = 0 \), then \(\sum_{i=1}^{n} a_{ij} r_i = 0, j = 1, \ldots, m \) implies \(\alpha_i r_i^T = 0 \) where \(r = (r_1, \ldots, r_n) \) and hence \(r^T \in \gamma_{\alpha_1} \{\alpha_1, \ldots, \alpha_m\} \). By assumption \(\beta_j r_i^T = 0, j = 1, \ldots, m \) so \(\sum_{i=1}^{n} \beta_j r_i = 0 \). This show that f is well defined. It is an easy matter to see that f is R-homomorphism. Fully (m,n)-stability relative to an ideal A of \(R^{m\times n} \) implies that there exists \(t = (t_1, \ldots, t_n) \in R^n \) and \(w \in M^mA \) such that \(f(\sum_{i=1}^{n} \alpha_i r_i) = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} \alpha_i r_i \right) t_k + w = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} \alpha_i r_i t_k \right) + w \) for each \(\sum_{i=1}^{n} \alpha_i r_i \in \sum_{i=1}^{n} \alpha_i R \).

Let \(r_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in R^n \) where 1 in the i th position and 0
otherwise. \(\beta_i = f(\alpha_i) = \sum_{k=1}^{n} \alpha_i t_k + w \)
which is contradiction. Conversely assume that there exists \(n \)-generated submodule of \(M^m \) and R-homomorphism \(\theta : \sum_{i=1}^{n} \alpha_i R \to M^m \) such
that \(\theta (\sum_{i=1}^{n} \alpha_i R) \not\in \sum_{i=1}^{n} \alpha_i R + M^n A \). Then
there exists an element \(\beta (\sum_{i=1}^{n} \alpha_i r_i) \in \sum_{i=1}^{n} \alpha_i R \) such that \(\theta (\beta \alpha R) \not\in \sum_{i=1}^{n} \alpha_i R + M^n A \). Take \(\beta_j = \beta_j, j = 1, \ldots, m \), then we have \(m \)-element subset \(\{ \theta (\beta), \ldots, \theta (\beta) \} \), such that \(\theta (\beta) \not\in \sum_{i=1}^{n} \alpha_i R + M^n A \).
\(\text{Let } \eta = (t_1, t_2, \ldots, t_m) \in \gamma_{R^n} \gamma_{R^n} \{ \alpha_1, \ldots, \alpha_m \} \text{ then } \alpha_j \eta = 0, \text{ i.e. } \sum_{i=1}^{n} a_{ij} t_i = 0, \forall j = 1, \ldots, m \), \(\alpha_j = (a_{1j}, a_{2j}, \ldots, a_{nj}) \) and \(\{ \theta (\beta), \ldots, \theta (\beta) \} \eta \)
\(\sum_{k=1}^{n} \theta (\beta) t_k = \sum_{k=1}^{n} \theta (\sum_{i=1}^{n} \alpha_i r_i) t_k = \sum_{k=1}^{n} (\theta (\sum_{i=1}^{n} \alpha_i r_i) t_k = 0, \text{ hence } \gamma_{R^n} \gamma_{R^n} \{ \alpha_1, \ldots, \alpha_m \} \subseteq \gamma_{R^n} \gamma_{R^n} \{ \theta (\beta), \ldots, \theta (\beta) \}, \text{ thus } \gamma_{R^n} \gamma_{R^n} \{ \alpha_1, \ldots, \alpha_m \} \subseteq \gamma_{R^n} \gamma_{R^n} \{ \theta (\beta), \ldots, \theta (\beta) \} \}
which is a contradiction. Thus \(M \) is fully \((m,n) \)-stable module relative to ideal

Corollary 1.3: Let \(M \) be fully \((m,n) \)-stable module relative to an ideal \(A \) of \(R^{m_m} \), then for any two m-element subsets \(\{ \alpha_1, \ldots, \alpha_m \} \) and \(\{ \beta_1, \ldots, \beta_m \} \) of \(M^n \), \(\gamma_{R^n} \gamma_{R^n} \{ \alpha_1, \ldots, \alpha_m \} \subseteq \gamma_{R^n} \gamma_{R^n} \{ \beta_1, \ldots, \beta_m \} \) implies \(\alpha_1 R + \cdots + \alpha_m R + M^n A = \beta_1 R + \cdots + \beta_m R + M^n A \).

Corollary 1.4: [1] Let \(M \) be a fully stable module relative to an ideal \(A \) of \(R \), then for each \(x, y \in M \), \(y \not\in (x) \), \(\gamma_{R^n} (x) = \gamma_{R^n} (y) \) implies \((x) + AM = (y) + AM \)

A submodule \(N \) of an \(R \)-module \(M \) satisfies Baer criterion relative to an ideal \(A \) of \(R \), if for every \(R \)-homo morphism \(f : N \to M \), there exists an element \(r \in R \) such that \(f(n) - rn \in AM \) for each \(n \in N \). An \(R \)-module \(M \) is said to satisfy Baer criterion relative to \(A \), if each submodule of \(M \) satisfies Baer criterion relative to \(A \) and it is proved that an \(R \)-module \(M \) satisfies Baer criterion relative to \(A \) for cyclic submodules, if and only if \(M \) is fully stable relative to \(A \) [1].

Definition 1.5: For a fixed positive integers \(n \) and \(m \), we say that an \(R \)-module \(M \) satisfies \((m,n) \)-Baer criterion relative to an ideal \(A \) of \(R \), if for any \(n \)-generated submodule \(N \) of \(M^n \) and any \(R \)-homomorphism \(\theta : N \to M^n \) there exists \(t \in R \) such that \(\theta (x) - xt \in M^n A \) for each \(x \in N \).

It is clear that if \(M \) satisfies \((m,n) \)-Baer criterion relative to an ideal \(A \) then \(M \) satisfies \((p,q) \)-Baer criterion relative to an ideal \(A \), \(\forall \ 1 \leq p \leq m \) and \(1 \leq q \leq n \).

Proposition 1.6: Let \(A \) be an ideal of \(R^{m_m} \) and \(M \) be an \(R \)-module such that \(\gamma_{R^n} (N \cap K) = \gamma_{R^n} (N) + \gamma_{R^n} (K) \) for each two \(n \)-generated submodule of \(M^n \). If \(M \) satisfies \((m,1) \)-Baer criterion relative to \(A \). Then \(M \) satisfies \((m,n) \)-Baer criterion relative to \(A \) for each \(n \geq 1 \).

Proof: Let \(L = x_1 R + x_2 R + \ldots + x_n R \) be \(n \)-generated submodule of \(M^n \) and \(f : L \to M^n \) an \(R \)-homo morphism. We use induction on \(n \). It is clear that \(M \) satisfies \((m,n) \)-Baer criterion, if \(n = 1 \). Suppose that \(M \) satisfies \((m,n) \)-Baer criterion for all \(k \)-generated submodule of \(M^n \), for \(k \leq n - 1 \). Write \(N = x_1 R, K = x_2 R + \ldots + x_n R \), then for each \(w_1 \in N \) and \(w_2 \in K \), \(f|N (w_1) = w_1 r, f|K (w_2) = w_2 s \) for some \(r, s \in R \). It is clear
r - s ∈ γ_r (N ⊕ K) = γ_r (N) + γ_r (K). Suppose that r-s = u+v with u ∈ γ_r (N), v ∈ γ_r (K) and let t = r - u = s +v. Then for any w = w_1+w_2 ∈ L with w_1 ∈ N and w_2 ∈ K, f(w) - wt = f(w_1) + f(w_2) - (w_1 + w_2)t = f(w_1)-w_1t + f(w_2) - w_2t = f(w_1) - w_1(r - u) + f(w_2) - w_2(s+v) = f(w_1) - w_1r + w_1u + f(w_2) - w_2s - w_2v = f(w_1) - w_1r + f(w_2) - w_2s ∈ M^n A.

Proposition 1.7: Let M be an R-module and A be an ideal of R. Then M satisfies (m,n)-Baer criterion relative to an ideal A, if and only if \(\ell_{M^n} \gamma_{R^n} (\alpha_1 R, \ldots, \alpha_n R) \subseteq \alpha_1 R + \ldots + \alpha_n R + M^n A \) for any n-element subset \{ \alpha_1, \ldots, \alpha_n \} of \(M^n \).

Proof: First assume that (m,n)-Baer criterion relative to an ideal A holds for n-generated submodule of \(M^m \), let \(\alpha_i = (a_{i1}, a_{i2}, \ldots, a_{im}) \), for each \(i = 1, \ldots, n \) and \(\beta = (\beta_1, \ldots, \beta_n) \in \ell_{M^n} \gamma_{R^n} (\alpha_1 R + \ldots + \alpha_n R) \). Define \(\theta: \alpha_1 R, \ldots, \alpha_n R \rightarrow M^n \) by \(\theta (\sum_{i=1}^{n} \alpha_i r_i) = \sum_{i=1}^{n} \beta_i r_i \). If \(\sum_{i=1}^{n} \alpha_i r_i = 0 \), then \(\sum_{i=1}^{n} a_{ij} r_i = 0 \), \(j = 1, \ldots, m \), this implies that \(\alpha_i r_i = 0 \) where \(r = (r_1, \ldots, r_n) \) and hence \(r^T \in \gamma_{R^n} (\alpha_1 R, \ldots, \alpha_n R) \). By assumption \(\beta_i, r_i^T = 0 \), \(\forall i = 1, \ldots, n \) so \(\sum_{i=1}^{n} \beta_i r_i = 0 \). This show that \(\theta \) is well defined. It is an easy matter to see that \(\theta \) is R-homomorphism. By assumption there exists \(t \in R \) such that \(\theta (\sum_{i=1}^{n} \alpha_i r_i) - (\sum_{i=1}^{n} \alpha_i r_i)t \in M^n A \) for each \(\sum_{i=1}^{n} \alpha_i r_i \in \sum_{i=1}^{n} \alpha_i R \). Let \(r_1 = (0, \ldots, 0, 1, 0, \ldots, 0) \in R^n \) where 1 in the \(i \)th position and 0 otherwise. \(\beta_i - \alpha_i t = \theta (\alpha_i) - \alpha_i t \in AM^n \) thus \(\beta_i \in \sum_{i=1}^{n} \alpha_i R + AM^n \) which is contradiction. This implies that \(\ell_{M^n} \gamma_{R^n} (\alpha_1 R + \ldots + \alpha_n R) \supseteq \alpha_1 R + \ldots + \alpha_n R + M^n A \). Conversely, assume that \(\ell_{M^n} \gamma_{R^n} (\alpha_1 R + \ldots + \alpha_n R) \subseteq \alpha_1 R + \ldots + \alpha_n R + M^n A \), for each \{ \alpha_1, \ldots, \alpha_n \} of \(M^n \). Then for each R-homomorphism \(f: \alpha_1 R + \ldots + \alpha_n R \rightarrow M^n \) and \(s = (s_1, \ldots, s_n) \in \gamma_{R^n} (\alpha_1 R + \ldots + \alpha_n R) \), \(\sum_{k=1}^{n} (\sum_{i=1}^{n} \alpha_i r_i) s_k = 0 \) for each \(\sum_{i=1}^{n} \alpha_i r_i \in \sum_{i=1}^{n} \alpha_i R \), hence \(\sum_{i=1}^{n} f (\sum_{i=1}^{n} \alpha_i r_i) s_k = 0 \), thus \(f (\sum_{i=1}^{n} \alpha_i r_i) \in \ell_{M^n} \gamma_{R^n} (\alpha_1 R + \ldots + \alpha_n R) \).

Corollary 1.8: An R-module M is fully (m,n)-stable relative to an ideal A of \(R^{nm} \), if and only if \(\ell_{M^n} \gamma_{R^n} (\alpha_1 R + \ldots + \alpha_n R) \subseteq \alpha_1 R + \ldots + \alpha_n R + M^n A \) for any n-element subset \{ \alpha_1, \ldots, \alpha_n \} of \(M^n \).

We can summarize the above results in the following theorem.

Theorem 1.9: The following statements are equivalent for an R-module M and an ideal A of R.
1. M is fully (m,n)-stable relative to A.
2. For any two m-element subsets \{ \alpha_1, \ldots, \alpha_m \} and \{ \beta_1, \ldots, \beta_m \} of \(M^n \), if \(\beta_j \notin \sum_{i=1}^{n} \alpha_i R + M^n A \), for each \(j = 1, \ldots, m \) implies \(\gamma_{R^n} \{ \alpha_1, \ldots, \alpha_m \} \nsubseteq \gamma_{R^n} \{ \beta_1, \ldots, \beta_m \} \).
3. (m,n)-Baer criterion relative to A for n-generated submodules of M^n.
4. \(\ell_{M^n} \gamma_{R^n} (\alpha_1 R + \ldots + \alpha_n R) \subseteq \alpha_i R + \ldots + \alpha_n R + M^n A \) for any n-element subset \(\{ \alpha_1, \ldots, \alpha_n \} \) of M^n.

Corollary 1.10: [1] The following statements are equivalent for an R-module M and an ideal A of R.
1. M is fully-stable relative to A.
2. For each x, y in M, \(y \in \gamma_R (x) \Rightarrow y + MA = (y) + MA \).
3. M satisfies Baer criterion to A for each cyclic submodule.
4. For each x in M, \(1_M (\gamma_R (x)) \subseteq (x) + \text{AM} \).

Recall that an R-module M is (m,n)-multiplication module if each n-generated submodule of M^n is of the form \(M_n I \) for some ideal I of \(R^{\alpha m} \).

Proposition 1.11: Let M be an (m,n)-multiplication R-module. Then M is fully (m,n)-stable module if and only if M is fully (m,n)-stable relative to each non-zero ideal of \(R^{\alpha m} \).

Proof: \(\Rightarrow \) It is clear.
\(\Leftarrow \) Let N be any n-generated submodule of M^n and f : N → M^n be any R-homomorphism. If N = \{0\}, then it is clear that M is fully (m,n)-stable relative to ideal. Let N \(\neq \{0\} \), and since M is an (m,n)-multiplication module, then M = M_n I, for some non-zero ideal I of \(R^{\alpha m} \). By hypothesis f(N) \(\subseteq N + IM_n = N + N = N \). Hence, M is fully (m,n)-stable module.

Corollary 1.12: [1] Let M be multiplication R-module. Then M is fully stable module if and only if M is fully stable relative to each non-zero ideal of R.

Recall that an R-module M is (m,n)-quasi-injective in each R-homomorphism from an n-generated submodule of M^n to M extends to one from M^n to M [4].

The following theorem follows from Theorem (2.14) in [5] and Proposition (1.11).

Theorem 1.13: Let M be an (m,n)-multiplication R-module. Then M is (m,n)-quasi injective if and only if M is fully (m,n)-stable relative to each non-zero ideal of \(R^{\alpha m} \).

Now we introduce the concept of (m,n)-quasi injective module relative to an ideal A of \(R^{\alpha m} \).

Definition 1.14: An R-module M is called (m,n)-quasi injective relative to an ideal A of \(R^{\alpha m} \) if for every R-homomorphism \(g : N → M^n \) where N is n-generated submodule of M^n and R-homomorphs f : N → M there exists R-homomorphism \(h : M^n → M \) such that \(fg(x) - h(x) \in \alpha M A \) for each x in N.

Proposition 1.15: If M is a fully (m,n)-stable R-module relative to an ideal A of \(R^{\alpha m} \), then M is (m,n)-quasi injective relative to A.

Proof:
Let \(N = \alpha_1 R + \ldots + \alpha_n R \) be n-generated submodule of M^n where \(\alpha_i \in M^n \) and f : N → M^n be any R-homomorphism. Since M is a fully (m,n)-stable module relative to A, then f(\(\alpha_1 R + \ldots + \alpha_n R \)) \(\subseteq \alpha_i R + \ldots + \alpha_n R + MA \), thus there exist \(s = (s_1, \ldots, s_n) \) \(\in R^n \) and \(w \in \alpha M A \). Let \(r_i = (0, \ldots, 1_i, \ldots, 0) \) such that \(f(\sum_{i=1}^n \alpha_i) \) = \(\sum_{i=1}^n \alpha_i \) + w. Define \(g : M^n → M \) by \(g(\alpha_i) = \alpha_i s^T \), it is clear that g is a well defined R-homomorphism. Now \(f(\sum_{i=1}^n \alpha_i) - g(\sum_{i=1}^n \alpha_i) = (\sum_{i=1}^n \alpha_i)s + w - (\sum_{i=1}^n \alpha_i)s = w \in \alpha M A \) and since for
each \(y \in \alpha, R + \ldots + \alpha_n R \), \(y = \sum_{i=1}^{n} \alpha_i t_i \)
for some \(t= (t_1, \ldots, t_n) \in R \), \(f(y) - g(y) = f(\sum_{i=1}^{n} \alpha_i) - g(\sum_{i=1}^{n} \alpha_i) \).

The following theorem follows from Theorem (1.13) and Proposition (1.115).

Theorem 1.16: If \(M \) is \((m,n)\)-quasi injective \(R \)-module then \(M \) is \((m,n)\)-quasi injective relative to an ideal \(A \) of \(R \).

The following theorem follows from Theorem (1.13) and Proposition (1.115).

Theorem 1.16: If \(M \) is \((m,n)\)-quasi injective \(R \)-module then \(M \) is \((m,n)\)-quasi injective relative to an ideal \(A \) of \(R \).

References: