Evaluate the Activity of Cucumis melo Ethanol Extract against Skin Cancer Named Melanoma

Ali A. A. Al-Shawi

Department of Chemistry, College of Education for Pure Sciences, University of Basra
Email: aliabd77@yahoo.com

Abstract

Chinese medicine herbs have a large library of bioactive compounds and Cucumis melo is one of Chinese herbs has been used for medical treatment and exhibit anticancer activity against colon cancer. In the present study, we evaluate anticancer activity of Cucumis melo ethanol extract at first by using high throughput screening HTS for herb fractions screening in concentration of 100μM to identify the effective fraction and then we measured the cytotoxic effects by using morphology changes, and detect apoptosis by AO/EB staining, our results showed that Cucumis melo ethanol extract have a strong toxicity against human melanoma A375 cancer cells and requires more investigation to identify the small natural molecule who is responsible for this cancer activity.

Keywords: Chinese medicinal herbs, Cucumis melo L, Melanoma.
Introduction

Melanoma chemotherapy treatment includes Alkylating Agents such as Dacarbazine (DTIC), response rate is 15% to 20% (Lucia BJ et al., 2009; Kyaw MH et al., 2010), Platinum Drugs (such as cisplatin, response of 15% as a single treatment) (Azadeh O et al., 2010; Svetromir NM et al., 2007), and Microtubule-toxin Agents (such as paclitaxel, response rate of 16% as single treatment) (Philip PA et al., 1994; Hill GJ et al., 1979). The side effects are still the main problem of chemotherapy agents (Bajetta E et al., 2002; Bleehen NM et al., 1995). Effectively, High throughput screening and the use of Chinese herbs provides better results of new small and natural molecules of anti-melanoma; this concludes acceleration in the ways by generating many new anti-melanomas (James AD and Edward SA, 1985; Wee YC and Hsuan K, 1992; Xianghui M and Zhiwen W, 2009). Cucumis melo is one of Chinese herbs belongs to cucurbitaceous family and it is a species of melon that has been developed into many cultivated varieties (Desai, B.B, 2004) and has been used in common medicine exclusively for curing disease. The plant fruit is used as vomitive but on few amounts by honey is tonic for stomach also Cucurbitacine glycosides are tetra cycle three terpenic and have anti-tumor effect (M. Asadi et al., 2012; Adekunle, A.A. and O.A. Oluwo, 2008). The herb compositions have studies and isolated several compounds (Lignou S et al., 2013; Albishri HM et al., 2013). Nakamura Y et al. in his research they identified a small natural molecule (3-Methylthiopropionic acid ethyl ester) from Japanese Cucumis melo and found it is enhanced differentiation in human colon cancer cells (Nakamura Y et al., 2008). Future research will focus on the identification of new anti-melanoma and small anti-tumor molecules by using high throughput screening technology that speeds up the chemists to discover new anticancer agents, which is expected to generate new structures. In our study, we have used high throughput screening of Cucumis melo ethanol fraction extract herb to evaluate anticancer toxicity as anti-melanoma by morphology changes, AO/EB staining to detect apoptosis affect and to use the herb extract for further mechanistic studies.
Materials and Methods

1. Chemical and reagents

Fetal bovine serum Hangzhou Sijiqing Biological Engineering Materials Co., Ltd. DMEM culture medium, and Dimethyl sulfoxide (DMSO) were purchased from Sigma. Acridine orange/ethidium bromide apoptosis staining was purchased from Beyotime Institute of Biotechnology Jiangsu China.

2. Preparation of Cucumis melo ethanol extract

Cucumis melo herb was purchased from national institute for food and drug control and jilin xiancao medical herb limited company by the Key Research Laboratory of Cell Biology, Membrane Channels Research and Anti-Cancer Drug Discovery in the School of Life Science, Northeast Normal University, Changchun, Jilin Province China. Specimen was deposited in this Key Laboratory. Briefly, Cucumis melo was crushed and then extracted in Soxhlet extractor with ethanol for more than 12 cycles to achieve maximum extraction of its ingredients. The ethanol extract was hemi dried using rotary evaporator and then dissolved in 80% methanol. After centrifugation at 12000 rpm for 15 minutes, the supernatant was separated and filtered with 0.18 μm filter paper. Starting from the first peak to the end of the last peak, the extracted material was divided into 80 fractions on the basis of time (30 seconds per fraction) using HPLC. The fractions were dried and dissolved in dimethylsulfoxide (DMSO) to obtain a 1 mg/mL stock solution. These fractions were subjected to screening for cytotoxicity against human melanoma A375 cells, and evaluated by morphological changes.

3.0 Cell Culture

Human melanoma cell line A375 was purchased from the Cell Bank of Shanghai Institute of Cell Biology, Chinese Academy of Sciences (Shanghai, China). The cells were cultured in DMEM supplemented with 10% FBS and 100 unit of Penicillin at 37°C in a CO₂ incubator with 5% CO₂, 95% air and 100% humidity. Cells were plated in 10 cm culture dish and allowed to grow to approximately 60-80% confluence before experimentation.
3.1 Cells morphology changes
The cells were harvested in 1×10^4 cells per well in 96-well plates. The cells were treated with 0, and 100 μM of *Cucumis melo* ethanol extract. 24h later, we observed the morphology changes of melanoma cells, we used untreated cells as a control and take pictures by using an optical microscope.

3.2 AO/EB staining to detect apoptosis
Acridine orange/ethidium bromide (AO/EB) was purchased from Bio Basic, INC, China. AO/EB was used to stain untreated and treated melanoma A375 cells. To detect apoptosis, the cells were harvested in 1×10^4 cells per well in 96-well plates. The cells were treated with 0, and 100 μM of *Cucumis melo* ethanol extract. 24h later; we started the staining procedure by removing the medium and adding 8μl of AO/EB (1:1) (The dye mix for the AO/EB staining was 100 μg/ml acridine orange and 100 μg/ml ethidium bromide in PBS) in each well. After mixing them gently; the mixture was incubated for 10-20min at 37°C, then we observed the staining cells and taken photos by using an optical microscope (Deborah R et al., 2005).

Results and Discussion
High throughput screening technology is a technique accelerates screening herbs fraction to identify active fraction and isolate small natural molecules can be used for cancer researches and treatment, and we used it in this study to screen about 80 fraction of *Cucumis melo* ethanol extract against melanoma A375 cells to identify active fractions and as showing in table (1) D2-D11; E2-E11; F2-F11; G2-G11 are exhibit high toxicity against melanoma cells and we can use these fractions to identify the responsible small compound for this anticancer activity and cells were treated with 100 μM of *Cucumis melo* ethanol extract and showed clearly a strong effect on melanoma A375 , perhaps due to the natural compounds mixture in *Cucumis melo* ethanol extract that enhances the activity against melanoma cells. Also, the cells were treated with 0 and 100μM of *Cucumis melo* ethanol extract and showed an effect on morphology changes of melanoma cells, as showing in Figure (1).

We used AO/EB staining to observe apoptosis affected by *Cucumis melo* ethanol extract, the previous studies showed that after staining by AO/EB, the
cells will stain with red for necrosis, bright green and DNA fragmentation for apoptosis and green for live cells (Leite M et al., 1999). The cells were treated with *Cucumis melo* ethanol extract and showed clearly the apoptosis compared with the control, and as mentioned in the previous studies to detect apoptosis by using AO/EB staining method as showing in figure (2).

In conclusion, high throughput screening technology speeds up the identification of new natural drugs against cancer cells and paves the way to discover new anti-drugs. In the present study results *in vitro*, we suggested that Chinese herb *Cucumis melo* extract have strong toxicity against human melanoma A375 and require further studies to identify the responsible small natural molecules for the cancer activity and study the mechanism, in addition will generate new small natural anti-melanoma molecules to discover new natural agents.

Table 1: show first high throughput screening HTS procedure to detect different toxicity fractions of Cucumis melo ethanol extract (negative control is untreated cells and positive control is cells treated with DMSO) (+ = low toxicity; ++ = medium toxicity; +++ = high toxicity) against melanoma A375 cancer cells

<table>
<thead>
<tr>
<th>Negative control</th>
<th>Cucumis melo ethanol extract fractions</th>
<th>Positive control</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>CS</td>
</tr>
<tr>
<td>B</td>
<td>CS</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>CS</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CS</td>
<td>D2</td>
</tr>
<tr>
<td>E</td>
<td>CS</td>
<td>E2</td>
</tr>
<tr>
<td>F</td>
<td>CS</td>
<td>F2</td>
</tr>
<tr>
<td>G</td>
<td>CS</td>
<td>G2</td>
</tr>
<tr>
<td>H</td>
<td>CS</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Morphology changes of melanoma A375; Cucumis melo ethanol extract fractions (0 and 100μM) showed strong toxicity compared with the control.

Figure 2. AO/EB staining to detect apoptosis of human melanoma A375 cells after 24h of Cucumis melo ethanol extract treated with 0 and 100μM. (Yellow arrows refer to live cells and red arrows refer to DNA fragmentation (dead cells))
Acknowledgments

The authors are grateful to Northeast Normal University, institute of genetics and cytology, membrane channel research laboratory, Jilin province, Changchun city, China for providing the materials, molecular techniques, and technical supports.

References

Discovery Today, 14: 23/24.

تقييم فعالية المستخلص الأيثانولي لوكوكيموس ميلو ضد سرطان الجلد المسمى الميلانوما

علي الوادي عبد الحسين الشاوي
قسم الكيمياء- كلية التربية للعلوم الصرفة- جامعة البصرة

الخلاصة:

تمتلك النباتات الطبية الصينية مكتبة كبيرة من المركبات الفعالة باستعمال الفيولوجيا، ويعود كوكيموس ميلو أحد النباتات الصينية والذي يستعمل في العلاج الطبي والذي له فعالية مضادة لسرطان القولون. في الدراسة الحالية قمت الفعالية المضادة للسرطان المستخلص الأيثانولي لنبات كوكيموس ميلو باستخدام تقنية الحكيد الالنتيغذي العالي الجرياني بتركيز 100 مايكرو مولار لتحديد فعالية السرطانية كما قيمت الفعالية السمية باستخدام تغيير شكل وطبيعة الخلايا السرطانية وكشف برنامج الخلايا المميت باستخدام صبغة خاصة لخلايا سرطان الجلد المسمى الميلانوما، دلت النتائج التي تم الحصول عليها أن المستخلص يوم فعالية فعالة مضادة لسرطان الميلانوما ويتطلب إلى دراسة اعمق من أجل عزل وتمثلي المركب المسؤول عن هذه الفعالية المضادة للسرطان مستقبلًا ودراسة الميكانيكية الفعالة للبروتينات المتأثرة.