Evaluation of inhibin-B hormone, FSH, and Testosterone in serum of infertile men

Shatha Al-Khateeb* BSc, PhD
Sabah M. Hussein** MBChB, PhD
Ahmad A. A. Ibrahim Dahy* BM (Tech), MSc

Abstract:
Background: Serum levels of inhibinB hormone, FH and testosterone hormone in serum of infertile men and compare the results with the fertile men (controls).

Thirty patients (infertile men) healthy 14 controls included in this study. Mean serum inhibinB, testosterone and FH level of oligospermia and azoospermia groups were significantly differences than these both control group.

Objective: The study was planned to evaluate serum levels of inhibinB hormone, FSH and testosterone hormone in infertile men and compare the results with these fertile men (Controls).

Materials & Methods: Thirty patients (infertile men) and 14 healthy controls (fertile men) included in this study, Age range (24 to 45 years). The patients (30) were divided into two groups, oligospermia and azoospermia.

Results: Mean serum inhibinB, testosterone and FH levels of oligospermia and azoospermia groups were significantly differences than these both control group, while the difference between mean of serum inhibin B, testosterone and FSH of oligospermia and oligospermia group, was not significant except the FSH (P.value=0.039).

Conclusion: The decrease in serum inhibinB and testosterone levels not the increase in the level of FSH hormone in infertile men provide evidence that levels can be used as reliable markers in the diagnostic criteria of male infertility.

Keywords: oligospermia, azoospermia, inhibinB, serum.

Introduction:

Fertility is the ability of the individual to reproduce through normal sexual act. About 90% of healthy, fertile women are able to conceive within one year if they have regular intercourse without contraception (1). Normal fertility requires the production of enough healthy sperm by the male and viable eggs by the female, successful passage of the sperms to the female fallopian tubes, penetration of a healthy egg, and implantation of the fertilized egg in the lining of the uterus. A problem with any of these steps can cause infertility (2) (3). Several hormones play essential roles in spermatogenesis like Inhibin, it is a glycoprotein hormone of gonadal origin, it’s secreted by the granulosa (female) and Sertoli (male) cells (4), which was has the ability to negatively regulate FSH (5). Follicle-stimulating hormone (FSH) is a member of the glycoprotein hormone family that has a central and essential role in reproduction. (FSH) is a hormone released by the anterior pituitary gland via stimulation from gonadotrophin releasing hormone and potentially other factors. It is released in a pulsatile fashion and is regulated in part by glycoproteins, including activin and inhibin. FSH reflects the status of spermatogenesis as a result of the feedback between the testis and hypothalamus/pituitary glands (6) (7).

Materials and Methods:
This study includes (30) infertile men, and 14 fertile men (control) their age range between 24 to 45 years, for the period from December 2013 to April 2014. The patients were chosen from the male infertility clinic of Al-Yarmouk Teaching Hospital and the male infertility clinic of the Institute for Embryo Research and Infertility Treatment, Al-Nahrain University, while fertile subjects were chosen from hospital staff and friends.

Sample collection: Five milliliter of venous blood were collected from each patient and control in a plain tube, the serum was separated immediately after coagulation then stored frozen at -20°C in deep freeze.

The deep frozen serum samples were thawed, kept to reach room temperature, and brought for the estimation of inhibinB, testosterone and FSH levels.

Statistical analysis was performed using SPSS version 20. Data were presented through simple frequency distribution table for each variable in the study.
Results:
The table (1) demonstrates the comparison of all the hormones between serum of control (fertile men) group and serum of oligospermia group. Statistical analysis showed that there are significant differences between the two groups.

Table (1): hormonal assay in serum for fertile and oligospermia

<table>
<thead>
<tr>
<th>Hormones</th>
<th>Control n=14</th>
<th>Oligospermia n=15</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>inhibin-B pg/ml</td>
<td>106.286 ±14.54</td>
<td>18.533 ±3.33</td>
<td>0.000**</td>
</tr>
<tr>
<td>Testosterone IU/mL</td>
<td>12.329 ±1.33</td>
<td>8.153 ±1.02</td>
<td>0.018*</td>
</tr>
<tr>
<td>(FSH) IU/mL</td>
<td>5.800 ±0.42</td>
<td>9.453 ±0.98</td>
<td>0.002**</td>
</tr>
</tbody>
</table>

**, is significant at the 0.01 level.
*, is significant at the 0.05 level.

On the other hand, when we discuss the results of azoospermic group as shown in table (2) interestingly all the hormones are statically significant difference without any exception

Table (2): hormonal assay in serum for fertile and azoospermia group

<table>
<thead>
<tr>
<th>Hormones</th>
<th>Control n=14</th>
<th>Azoospermia n=15</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>inhibin-B pg/ml</td>
<td>106.286 ±14.54</td>
<td>15.600 ±2.45</td>
<td>0.000**</td>
</tr>
<tr>
<td>Testosterone IU/mL</td>
<td>12.329 ±1.33</td>
<td>6.933 ±0.49</td>
<td>0.001**</td>
</tr>
<tr>
<td>(FSH) IU/mL</td>
<td>5.800 ±0.42</td>
<td>13.220 ±1.44</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

**, is significant at the 0.01 level.
*, is significant at the 0.05 level.
Ns: is non significant deferent.

Now, table (3) focused on the comparison of the hormones in serum for oligospermia and azoospermic infertile men. All the studied hormones are statistically not significant except FSH (P<0.01).

Table (3): hormonal assay in serum for oligospermia and azoospermia group

<table>
<thead>
<tr>
<th>Hormones</th>
<th>Oligospermia n=15</th>
<th>Azoospermia n=15</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>inhibin-B pg/ml</td>
<td>18.533 ±3.33</td>
<td>15.600 ±2.45</td>
<td>0.484ns</td>
</tr>
<tr>
<td>Testosterone IU/mL</td>
<td>8.153 ±1.02</td>
<td>6.933 ±0.49</td>
<td>0.291ns</td>
</tr>
<tr>
<td>(FSH) IU/mL</td>
<td>9.453 ±0.98</td>
<td>13.220 ±1.44</td>
<td>0.039*</td>
</tr>
</tbody>
</table>

**, is significant at the 0.01 level.
*, is significant at the 0.05 level.
Ns: is non significant deferent.

Discussion:
In infertile men, higher concentration of FSH is considered to be a reliable indicator of germinal epithelial damage, and was shown to be associated with azoospermia and severe oligozoospermia (9). FSH is necessary for initiation of spermatogenesis and maturation of spermatozoa (8). Elevated level of serum FSH with increasing severity of seminiferous epithelial destruction which was seen in this study in azoospermic group and to limited extend with oligozoospermic group , this noticed by (De-Kretser et a.1979), (Babu et al.2004), (Sulthan et al,1995), (Zabul et al.1994),(10) (11) (12) (13). (Reyes-fuentes et al.1997) found that elevated of serum level of FSH hormone was observed in oligozoospermic males when compared with normozoospermic men.hormones in this study elevation of FSH hormone found in both oligozoospermic and azoospermic groups. (Al-Rekabe et al.,2010) found a decrease in the level of testosterone hormone in control men , which agree with our results. (Nieschlag, 1997) found a decrease in FSH level and testosterone in oligozoospermic men . The data confirm by (Andersson et al,2004) that serum inhibin B and FSH levels correlate well with sperm concentration and thus support their role as serum markers of spermatogenesis, these results are in agreement with the study of Andersson et al in normal (control) men only ,while ,disagrees with it in oligozoospermia. In accordance with the study that done by (Brazao et al ,2003) who observed significantly lower serum inhibin B levels and higher FSH levels ,which agree with our results, Brazao et al. taken group cryptorchid infertile men and this group represent absence of testis , hormones in our present study were did not define the causes of the male infertility and considered the cryptorchid with the infertility. Inhibin B has been evaluated as a serum marker of spermatogenesis in a number of studies(Klingmüller and Haidl, 1997), (Pierik et al,1998), (Mahmoud et al,1998), (von Eckardstein, et al,1999), (Hipler et al,2001) and (Jensen et al,1997). (19) (4) (20) (21) (22) (23). Present results could be similar to what had been suggested by (Klingmüller and Haidl, 1997), (Pierik et al.,1998), (Mahmoud et al,1998), (von Eckardstein, et al,1999), (Hipler et al,2001) and (Jensen et al,1997) (19) (4) (20) (21) (22) (23), that explained the inhibin B has been evaluated as a serum marker of spermatogenesis. The observed prediction values of inhibin B and FSH alone or in combination makes it clear that these two markers can never stand alone in the diagnosis of male infertility. Even with a well-defined reference material, a proportion of the infertile males when compared with normozoospermic men will still fail to be identified if the diagnosis is based on these markers alone (Bohring et al,2002) . This study found that cut-off values of inhibin B is (15.6 pg/ml) in serum azoospermic men,while in serum oligozoospermic men was (18.5 pg/ml).
Evaluation of inhibin-B hormone, FSH, and Testosterone in serum of infertile men

Shatha Al-Khateeb

Author Contributions:
Shatha Al-Khateeb & Sabah Madi Hussein supervised the research.
Ahmad A. Ibrahim Dahy designed, performed the experiments, and wrote the manuscript.

References: