Doxorubicin Induced Nephrotoxicity: Protective Effect of Rosmary leaves

Sura Salman Ejam
College of Medicine, University of Babylon
ejamsura@yahoo.com

Abstract

Background: Doxorubicin (DOX) is a potent anthracycline antibiotic. It is a widely used drug in the cancer to treat a wide variety of human malignancies. Cardiotoxicity has long been recognized as a complicating factor of DOX. This study was designed to investigate the acute DOX-induced cardiotoxicity, nephrotoxicity, hepatotoxicity.

Material and Methods: Twenty eight male Swiss Albino mice were randomly divided into four groups including group1 (negative control), treated with distill water (D.W) intraperitoneal (i.p) injection, group 2 (positive control), treated with 15 mg/kg DOX as a single (i.p) injection, groups 3 received 30mg/kg of the aqueous extract of Rosmarinus officinalis leaves (ROE) orally (p.o), once daily for 2 weeks, then injected i.p with 15 mg/kg DOX. Two days after DOX or D.W (in control group) injection, animals in all groups were scarified and the levels of the blood urea and serum creatinin were measured. Also the possible cardiac histopathological changes were investigated.

Results: The administration of DOX (15 mg/kg i.p.) induced nephrotoxicity which manifested by significant elevation (p<0.05) in blood urea and serum creatinin levels. In addition, kidneys histopathological sections showed development of sever glomerulosclerosis, tubular necrosis and tubulointerstitial lesion. Oral administration of 30mg/kg ROE 2 weeks prior to DOX produced a significant protection which was evidenced by significant reduction (p<0.05) in blood urea and serum creatinin levels. Moreover, histopathological sections showed only mild tubular necrosis and in comparison to DOX positive control group (p<0.01).

Conclusion: Administration of 30mg/kg ROE protect against DOX-induced nephrotoxicity.

Key words: Doxorubicin, Rosmarinus officinalis, nephrotoxicity, mice.
Introduction
Doxorubicin (DOX):
Doxorubicin (also called adriamycin) is a potent anthracycline antibiotic which have been widely used in the chemotherapy to treat a wide variety of malignancies (Sauter et al., 2010; Shi et al., 2011) including solid and hematopoietic tumors (Lothstein et al., 2001; Simunek et al., 2009). It is a valuable component of various chemotherapeutic regimens of breast carcinoma and small-cell lung carcinoma. In metastatic thyroid carcinoma, DOX is the best available agent, also it is an important ingredient for the successful therapy of Hodgkin’s disease and non-Hodgkin’s lymphomas and many other cancers (Kufe et al., 2003; Smith et al., 2010).

The exact mechanism of action of DOX as anticancer agent is not fully understood, it has been attributed to the intercalation into DNA, leading to inhibition of macromolecular synthesis, preventing the replication of rapidly growing cancer cells (Sauter et al., 2010; Hynek et al., 2012; Shi et al., 2011). Nowadays, the inhibition of topoisomerase II-α is thought to be the main cellular target of DOX (Horenstein et al., 2000; Simunek et al., 2009; Hynek et al., 2012). DOX acts by stabilizing a reaction intermediate in which DNA strands are cut and covalently linked to the tyrosine residues of topoisomerase II, thus it blocks subsequent DNA rescaling. Failure to relax the supercoiled DNA lead to blockage of DNA replication and transcription. So, DNA strand breaks lead for triggering of apoptosis of cancer cells, apparently via the p53-dependent pathway (Ruiz-Ruiz et al., 2003). Other mechanism of action include metal ion chelation and free radical generation, leading to DNA damage or lipid peroxidation (Sparreboom et al., 2002; Xu et al., 2005; Sauter et al., 2010), it also may induce apoptosis (Takemura and Fujiwara, 2007). DOX also can reduce the viability of cancer cells via RNA damage and inhibit the synthesis of DNA, RNA and proteins (Fimognari et al., 2009; Shi et al., 2011).

The optimal use of doxorubicin is limited by a number of side-effects, the most important are cardiotoxicity, haematotoxicity [Al-Harbi et al., 1992] and a doselimiting nephrotoxicity [Jovanovic, et al., 1996].

DOX cytotoxicity and genotoxicity may be mediated by free radicals derived from this drug and its capability to induce apoptosis through a wide variety of mechanisms including production of ROS, alkylation of cellular macromolecules, DNA intercalation and cross-linking, lipid peroxidation, cell membrane damage, ceramide production and p53 induction in various tissues (Bose et al., 1995; Quiles et al., 2002; Sparreboom, et al., 2002; Ashikawa et al., 2004).

The exact mechanism of doxorubicin induce nephrotoxicity is not yet known. Although the exact mechanism of DXR-induced nephrotoxicity remains unknown, it is believed that the toxicity may be mediated through free radical formation, iron-dependent oxidative damage of biological macromolecules, membrane LPO, and protein oxidation [Liu et al., 2007]. DXR-induced changes in the kidneys of rats include increased glomerular capillary permeability and tubular atroph [Wapstra, et al., 1999].
Herbal protection against chemotherapeutic toxicity:

Herbal drug therapy is considered a common practice adopted in traditional and alternative medicine and has been used in the treatment of many diseases from ancient times (Nabavizadeh, 2009). Plant material in the human diet contains a large number of natural compounds, which may be of benefit in protecting the body. Scavenging of free radicals, elevation of cellular antioxidants, induction of bone marrow recovery and extrahaematological tissue regeneration by plants and herbs in damaged systems could be leading mechanisms of protection (Joshi et al., 2010). One of the plants with constituents reputed to possess antioxidant properties was *Rosmarinus officinalis*.

Rosmarinus Officinalis (RO):

Rosmarinus Officinalis (also called Rosemary) an evergreen shrub is one of the herb spices of the family Labiatae. It was cultivated in Mediterranean first, then transplanted to China in Dynasty, but cultivated in all of the world now (Hui-Hur et al., 2001). Rosemary is a perennial evergreen herb with fragrant needle-like leaves (Bousbia et al., 2008). Rosemary herbs have been widely used in the traditional medicine and cosmetics. They are also used as flavouring agents in foods (Pintore et al., 2002). RO essential oil is also important for its medicinal uses and its powerful antibacterial, cytotoxic, antimutagenic, antioxidant, antiphlogistic and chemopreventive properties (Koschier et al., 2003; Ohno et al., 2003; Celiktas et al., 2007). Leaves of RO possess a variety of bioactivities; including antioxidant (Bozin et al., 2007; Wang et al., 2008), antitumor (Singletary et al., 1996; Abdullah et al., 2010), antibacterial (Bousbia et al., 2008; Celiktas et al., 2007; Gachkar et al., 2007) and anti-inflammatory actions (Altinier et al., 2007). These bioactivities of the rosemary leaves extract are comparable with known antioxidants constituents, such as carnosic acid, carnosol, rosemarinic acid, ursolic acid, butylated hydroxyanisole and butylated hydroxytoluene, without the cytotoxic and carcinogenic risk of synthetic antioxidants (Almela et al., 2006; Ramirez et al., 2006).

Aim of the study

To investigate the *Rosmarinus officinalis* leave extract (ROE) protective role on renal tissue against DOX-induced nephrotoxicity.

Materials and Methods:

1. **Preparation of Plant Extract:**

 Leaves of RO were purchased from the Hilla local market and identified by a competent botanist at the collage of science for girls, at Babylon university, Iraq. We washed the leaves carefully, then air dried in shade at room temperature, then grinded to fine powder. The leaves extract was prepared by extracting 40 gm of leaves powder with 80 ml distilled water by refluxing with sohxcilate instrument for 36 hrs at 50-60 °C. Pellets of the extract were obtained by evaporation of its liquid contents in the incubator. We dissolved the pellets in distilled water to prepare the required dose of treatment and administered by stomach tube at a doses of 15 mg/kg and 30 mg/kg body weight daily for 14 consecutive days (Jindal et al., 2006).
2. Animals:
Twenty eight male Swiss Albino mice (weighting 25 – 30 g) were used in our study. The mice put in the animal house in the college of medicine in Babylon university under constant conditions of temperature (22 ± 2) °C and lighting (12:12hr light: dark cycle) for two weeks before and through the experimental work, the mice being maintained on a standard commercial mice chow and tap water were available ad-libitum.

3. Experimental design:
The animals were randomly divided into 4 groups (7 mice in each group) as follows:

Group 1 (negative control): received 0.3ml distilled water (D.W), orally (p.o) by using stomach tube once daily for 2 weeks, then injected i.p with D.W

Group 2 (positive control): injected intraperitoneally (i.p) with 15mg/kg DOX (EBEWE Pharma Ges.m.b.H. Nfg.KG, AUSTRIA) (Nilesh Shinde, *et al.*, 2010)

Group 3: received 30 mg/kg of ROE, p.o once daily for 2 weeks, then injected i.p with 15 mg/kg DOX.

After 2 days of DOX or D.W (in negative control group) injection, animals in all groups were scarified (Abd-Allah *et al.*, 2002) under light anesthesia with diethyl ether. the kidneys were extracted and fixed in 10% formalin to investigate the probable histopathological changes.

Blood samples preparation:
The blood was aspirated 2 days after D.W. or DOX injection from the heart of mice in all groups. The blood was directly collected through intracardiac puncture by disposable plastic syringes and immediately transferred into plastic test tubes without anticoagulant and left for 15 - 20 minutes at room temperature to promote blood coagulation. Serum was obtained after centrifugation at 3000 rpm for 10 minutes and preserved at -20 °C until the determination of blood urea and serum creatinin.

Measurement of serum creatinine:
In an alkaline media, creatinine reacts with picrate to form a coloured (yellow-orange) complex which absorbs light at 510 nm. The rate of color formation is proportional to the creatinine concentration in the sample (Henry, 1974). Kit used is spinreact sa kit.

Measurement of serum urea:
According to the modified urease-Berthelot method, the salicylate and hypochlorite in the reagent react with the ammonium ions to form a coloured (green) complex, that can measured by spectrophotometer at 580 nm to determine the level of urea in the serum (Fawcett and Scott, 1960). Kit used is biomerieux sa kit.

Histopathological slides preparation:
The kidneys of mice were sectioned and stained with haematoxiline and eosin stain and examined under light microscope to detect the histopathological changes.
Statistical Analysis
The SPSS version 17.0 was used for the statistical analysis, test was used is this study for S.ck and LDH, while chi-square test was used for histopathological changes. The data expressed as mean ± SD, P-values less than 0.05, 0.01 and 0.001 were considered as statistically significant, high significant and extremely significant respectively. (Daniel, 1999).

Results
1. Biochemical
In group 2 (received 15mg/kg DOX only) haematological examination showed high significant (p< 0.001) increase in serum levels of both blood urea and serum creatinin, as compared to group 1(received D.W). In group 3 (received 30mg/kg ROE 2 weeks before DOX injection) ROE treatment resulted in a high significant reduction (p< 0.001) in serum levels of both blood urea and serum creatinin, as compared to group 2 as shown in (Table 2).

2. Histopathological
1- Renal histopathological sections for all mice in group 1 (negative control) (100%) showed normal renal histology (Fig. 1)
2- Renal histopathological sections for mice in group 2 (positive control) which injected with DOX (15mg/kg) only, showed development of sever inflammation and tubular necrosis and in 6(85.71%) mice (Fig. 2) and mild changes in 1(14.29%) mouse (Fig. 3), that was highly significantly differ from negative control group (P< 0.01).
3- Renal histopathological sections for mice in group 3 which received ROE 30 mg/kg for 2 weeks before DOX (15mg/kg) injection showed mild tubular necrosis in 5 (71.43%) mice (Fig. 3). and sever changes in 2(28.57%) mice (Fig. 2).

Table 1: Histopathological changes in each experimental group

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Normal renal histology</th>
<th>Mild inflammation, and tubular necrosis</th>
<th>Sever inflammation and tubular necrosis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>7 (100%)</td>
<td>0</td>
<td>0</td>
<td>7 (33.33%)</td>
</tr>
<tr>
<td>Positive control</td>
<td>0</td>
<td>1 (14.29%)</td>
<td>6 (85.71%)a</td>
<td>7 (33.33%)</td>
</tr>
<tr>
<td>DOX + ROE 30mg/kg</td>
<td>0</td>
<td>5 (71.43%)a,b</td>
<td>2 (28.57%)b</td>
<td>7 (33.33%)</td>
</tr>
<tr>
<td>Total</td>
<td>7 (33.33%)</td>
<td>6 (28.57%)</td>
<td>8 (38%)</td>
<td>21 (100%)</td>
</tr>
</tbody>
</table>

a= P< 0.01 vs. negative control; b= P< 0.01 vs. DOX positive control group.
Table 2: blood urea and serum creatinin changes in each experimental group
(results are expressed as mean ± SD)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Serum CK Mean ± SD</th>
<th>Serum LHD Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>30 ±6.2</td>
<td>0.36±0.05</td>
</tr>
<tr>
<td>Positive control</td>
<td>60.8±9.5<sup>a</sup></td>
<td>0.68±0.035<sup>a</sup></td>
</tr>
<tr>
<td>DOX + ROE 30mg/kg 2 weeks before DOX</td>
<td>40.4±40.4<sup>a,b</sup></td>
<td>0.41±0.08<sup>b</sup></td>
</tr>
</tbody>
</table>

^a=P< 0.05 vs. negative control; ^b=P< 0.05 vs. DOX positive control.

Figure 1: kidney section show the normal histology

Figure 2: renal histopathological section show the sever tubular necrosis
Discussion:

Antioxidants were reported to have beneficial effects against DOX-induced nephrotoxicity in mice and rats (Liu et al., 2002) so they protect cells and tissues from oxidative damage induced by free radicle injury (Nakagawa and Yokozawa, 2002). Thus when the antioxidant defense mechanisms is less developed, kidney is more susceptible to the injury by anthracycline induced ROS (Abou-El-Hassan et al., 2003). Results of the present study indicate that DOX (15 mg/kg) induced oxidative stress in renal tissues as manifested by elevated blood urea and serum creatinin. These results are agree with (Nilesh Shinde, et al., 2010;) which revealed similar elevations in blood urea and serum creatinin in rats following challenge with a single dose of DOX. Also the histopathological changes found by the our study in DOX- only treated group are consistent with (Nilesh Shinde, et al., 2010) which found that light microscopic examination of kidneys of rat showed moderate tubular atrophy & dilation in DXN alone. Also, it was reported that DXR-induced changes in the kidneys of rats include tubular atrophy [Wapstra, et al., 1999].

It had been found that the RO leaves extract has potent antioxidants like flavonoids, phenols, volatile oil and terpenoids (Asada, 1999; Almela et al., 2006). Also Moreno et al (2006) reported that rosemary extracts have a high scavenging capacity of different types of ROS and nitrogen species, so free radicals, thought to be one of the major mechanisms of the antioxidant action exhibited by phenolic phytochemicals (Moreno et al., 2006). Among the antioxidant compounds in the leaves of rosemary, ~90% of the antioxidant activity can be attributed to carnosol and carnosic acid. Carnosol, a naturally occurring polyphenol which is found in rosemary leaves, showed a potent antioxidative activity against α-diphenyl-B-picryldrazyl free radicals produced from Fenton reaction (Lo et al., 2002). In another study extract of rosemary supplemented to chicken, slowed down effectively the lipid peroxidation (Serdaroglu and Yildiz-Trup, 2004).

In our study oral administration of 30mg/kg ROE 2 weeks prior to DOX produced a reduction in blood urea and serum creatinin levels, in addition to the histopathological sections that reveal only mild tubular necrosis in comparison to DOX positive control group. This effect of RO may be due to the antioxidative activity of one or more of its constituents (Bozin et al., 2007; Wang et al., 2008), that may reduce nephrotoxicity due to DOX-induced oxidative stress (Moreno et al., 2006).
Conclusions

Our study revealed that rosemary aqueous extract decreases the DOX-induced nephrotoxicity in albino mice.

References

