The Role of Plasma Homocysteine Level in Leukemia Disease and its Relationship with the Blood Component The White Blood Cell and Hemoglobin in Patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

Department of Chemistry, College of Education, Tikrit University

Received 30 June 2015; Accepted 29 November 2015

Abstract

Overall this paper to investigate the relation Homocysteine (Hcy), WBC, and Hemoglobin with Leukemia (Blood cancer) disease. Studies of Iraqi men in Tikrit Hospital. Leukemia and is characterized by an abnormal proliferation of blood cells, white blood cells (leukocytes).

Objectives: To investigate homocysteine levels in Leukemia disease and its relationship with White blood cells (WBC) and Hemoglobin (Hb) (repeated).

Methods: This investigation performed as a case control study for two groups as 40 Leukemia patients and 25 as a control. Patients for two group in Tikrit-Iraq. Leukemia patients were selected based on the criteria of the American Psychological Association. Plasma homocysteine level were measured by HPLC method at UV detector 338nm WBC and Hb were measured by method Manual blood count Hemacytometer is a counting chamber according to WHO. Results: 40 Patients in group1 plasma Homocysteine was 21.15±8.9 μmol/L, but in control group plasma Homocysteine was 12.00±4.33 (p=0.83). The average plasma homocysteine level in the group 2 of patients was 10.56±3.99μmol/L, Homocysteine in the control group 2 was 28.11±9.75μmol/l, (p=0.78). Conclusion: The average plasma homocysteine level in Leukemia patients was higher than in the control group; however, it shows a significant relationship with the WBC and Hb.

Keywords: Homocysteine, Leukemia disease, WBC, Hb, Iraq
The Role of Plasma Homocysteine Level in Leukemia Disease and its Relationship with the Blood Component The White Blood Cell and Hemoglobin in Patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

The role of plasma homocysteine level in leukemia disease and its relationship with the blood component the white blood cell and hemoglobin in patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

Vol: 12 No:4, October 2016

ISSN: 2222-8373
Introduction

Homocysteine is a sulfur amino acid and an intermediate in methionine metabolism (1). The chemical structure and its thiolactone is presented Fig. 1.

![Figure 1. The chemical structure of Homocysteine (A) and its thiolactone (B).](image_url)

Increase homocysteine levels in cells defined as hyperhomocysteinemia while decrease of homocysteine levels in cells defined hypohomocysteinemia has been correlated with many diseases, as cardiovascular and atherosclerosis (2). Hyperhomocysteinemia result from various factors, as lifestyle diseases, sex, diet, drugs, and age. Unbalanced in diet, leading deficiency of vitamins B2, B12, B6 and folic acid and relations with an increase in Homocystein conc. As well as alcohol, smoking and coffee also lead to increased Homocysteine range. Increase of Homocystien found in human pathologies, involve neurodegenerative diseases, (3). The authors review describes the effect of hyperhomocysteine on different components of blood platelets, endothelial cells, plasmatic fibrinogen and plasminogen, Fig. 2.

Hemostatic abnormalities. The normal hemostatic mechanisms prevent the hemorrhage (4).

![Fig 2. Metabolism of homocysteine.](image_url)
The Role of Plasma Homocysteine Level in Leukemia Disease and its Relationship with the Blood Component The White Blood Cell and Hemoglobin in Patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

Regulates the properties of blood, are described by interactions of homocysteine and its different derivatives, including homocysteine thiolactone, and major components of hemostasis as endothelial cells, plasmatic fibrinogen and plasminogen, and blood platelets, are also discussed. The blood vessel wall, blood platelets, fibrinolytic proteins and coagulation factors.

A vascular endothelium maintains the balance between stimulation of platelet and activation prevention, and between coagulation and fibrinolysis as well as between vasoconstriction and vasodilation(50). In hemodialysis patients, plasma range of total homocysteine are influenced by nutritional case. To investigate the association between homocysteine serum ranges as a marker and WBC counts marker for inflammation,(6). White blood cells as important marker for disease processes. Increase levels WBC also be considered a risk factor for infarction, and decreases during hemodialysis is investigated as a function of different dialysis membranes (7,8). Homocysteine metabolism is consists two pathways: Remethylation to methionine, which requires vitamins B-complex as coenzymes; and transsulfuration of cysteine, which requiresthe B6 coenzyme.(9). Hyperhomocysteinemia is correlated with many diseases as disorders, autoimmune, congenital anomalies, kidney diabetes, dysfunction, and malignant diseases,(10,11). Many mechanisms are supposed for infarction in patients, as leukemic infiltration effects of the antileukemic therapy and chemotherapies , as leukostasis syndrome(12). Leukocytosis is elevate WBC count as the leukocyte count as mention above in normal range and Leucocytosis is Increase in the account circulating leucocytes more 11 x 103 account. Elevated leukocytes lead to increases due to monocyte precursors in the bone marrow that is stimulated by products for inflammation.(13), and intravascular coagulation deficiency of coagulation factors(8). WBC count was 11,000/mm3, which made leukostasis less likely, The white blood cell count was 900/mm3 it will made less than leukostasis[14],WBCs including neutrophils, lymphocytes, monocytes, eosinophils, and basophils[15]. White blood cells (WBC) considered as an important Biomarker for several disease and processes so elevated White blood considered a risk factor for acute infarction, disease and stroke(16). indicating further that leukostasis was unlikely thrombosis.
Homocysteine is found to be elevated in rapidly pro-tumors even though not treated with drugs. It was also proposed that homocysteine as a potential tumor marker(17).

Aim of study:
To investigate homocysteine levels in Leukemia disease and its relationship with White blood cells(WBC) and Hemoglobin.

Materials and Methods
Eighty Leukemia patient and 50 control healthy human categories for two groups depended to period age (19-25) year and (25-55) year, Forty patients with eukemia and 25 healthy people. First the patients groups As were studied in Tikrit hospital/Iraq, from May2014 to June 2015. This study was performed with patients consent and approved by the Ethics Committee all patients and control samples carried out in Irbil-Iraq. The diagnosis of Leukemia disease was based on the diagnostic criteria of American Psychological Association(18).Measurements of plasma homocysteine , have been described (19).briefly, Homocystine was determined by High performance liquid Chromatography technique(HPLC); with UV detector at 338nm; WBC were measured by Hemacytometer is a counting chamber according to WHO method and Hb blood by Manual method (20).

Results
Mean age patients and control groups was 20.1 ± 2.1 and 40.2 ±3.2 ; previously. Gender in both groups is male. Both group patient and control regarding age and gender, number of patients according to deterioration scale was shown in Figure 1. The mean levels of homocysteine in patients 21.15±8.9 μmol/l, while in control group 1 is 12.0±4.33 μmol/l. Non-significant differences in homocysteine level in patients and control groups (p=0.83). The mean homocysteine of patient group 2 28.11±9.75μmol/ /l and in the control group 2 was 10.56±3.99 μmol/l . difference of homocysteine mean range in patients and control group 2 was significant (p=0.78). There was a significant For estimating the homocysteine cut point. average levels WBC account for patients was 22.5±9.92(10^6 cell/l),and in the control group 1
was $7.62 \pm 2.11 \times 10^6$ cell/l. difference of WBC in patients and control in group 1, was high significant ($p=0.65$). Average of WBC of patients group 2 is $30.89 \pm 11.5 \times 10^6$ cell/liter while in control group 2 is $6.53 \pm 2.01 \times 10^6$ cell/liter. difference range for patients group and control group 2 is clear significant ($p=0.92$). There was a significant For estimating the WBC. The average level of Hb in patients was 5.84 ± 1.46 g/dl, and in the control group 1 was 10.91 ± 3.38 g/dl. The difference of level in patients and control group 1 was no significant ($p<0.001$). Average Hb in a patient group 2 was 5.34 ± 2.33 g/dl in the control group 2 was 11.35 ± 4.58 g/dl and difference Hb level in patients and control groups 2 was no significant ($p<0.001$). There was a significant For estimating the all results showed in Table 1, Fig 3 and Table 2, Fig 4.

Table 1- Comparison of all measured parameters between control and Leukemia Patient group1 (Data presented as Mean ± SD). Based on age(19-25) year.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Controls Mean±SD N=25</th>
<th>Patient Mean±SD N=40</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homocystine μmol/L</td>
<td>12.0±433</td>
<td>21.15±8.9</td>
<td>0.83</td>
</tr>
<tr>
<td>WBC X 10⁶ Cell/L</td>
<td>7.62±2.11</td>
<td>22.5±9.92</td>
<td>0.65</td>
</tr>
<tr>
<td>Hb g/dl</td>
<td>10.91±3.83</td>
<td>5.84±1.46</td>
<td><0.001</td>
</tr>
</tbody>
</table>
The Role of Plasma Homocysteine Level in Leukemia Disease and its Relationship with the Blood Component The White Blood Cell and Hemoglobin in Patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

Table 2-Comparison of all measured parameters between control and Leukemia Patient group 1 (Data presented as Mean ± SD). Based on age (25-55) year

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Controls Mean±SD N=25</th>
<th>Patient Mean±SD N=40</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homocystiene μmol/L</td>
<td>10.56±3.99</td>
<td>28.11±9.75</td>
<td>0.78</td>
</tr>
<tr>
<td>WBC $\times 10^6$/Cell/L</td>
<td>6.53±2.0</td>
<td>30.89±11.50</td>
<td>0.92</td>
</tr>
<tr>
<td>Hb g/dl</td>
<td>11.35±4.58</td>
<td>5.43±2.33</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Figure-3. parameters in control and Leukemia Patient in group1

Figure-4. parameters in control and Leukemia Patient in group1
Discussion

Concentration of homocystein in blood is influenced by a genetic factors and by interaction between other factors (21), homocysteine levels depend on sex, smoke, age, function of liver, kidneys, physical activity and diet (22), also various compounds lead to the reduction of homocystein like folic acid and B6 vitamins should be mentioned (23, 24). In the results of the study showed, increased Hcy concentration in blood of patients and comparison with control groups and increase WBC in patients comparison with control while decrease Hb in two groups patients rather than high in control groups. Other experiments indicate that elevated homocysteine and vitamins deficiency are directly associated with oxidative stress (25). Anothers indicate that regular intake of antioxidants, and correlated with metabolites, and correlations with a decline risk cancer (26). All mechanisms protection homocystein act are unknown still now (27). Another study point inflammatory cytokines as well as the range of lectin-oxidized low-density lipoprotein reduced in homocystein fed wide range of biological effects, involve antiplatelet, and anti-inflammatory, anticancer (28).

In conclusions, homocysteinemia to hemostatic abnormalities is complex and still this study showed that the homocysteine range in Leukemia patients group higher significantly in comparison with the control group. However, there is relationship homocysteine We recommend that in future studies to carried out on a large number of samples taken from patients.
The Role of Plasma Homocysteine Level in Leukemia Disease and its Relationship with the Blood Component The White Blood Cell and Hemoglobin in Patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

References

The Role of Plasma Homocysteine Level in Leukemia Disease and its Relationship with the Blood Component The White Blood Cell and Hemoglobin in Patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

The Role of Plasma Homocysteine Level in Leukemia Disease and its Relationship with the Blood Component The White Blood Cell and Hemoglobin in Patients Tikrit-Iraq

Nadia Ahmed Salih Al-Guburi

