Free intersection space (F-space)

Khaleel Kh. Asadullah
Department of Mathematics-College of Science-Al-Mustansiriyah University

Submitted: 10/01/2011 Accepted: 29/05/2011

ABSTRACT

In this work we introduce the concept of free intersection space with basic definitions and some properties for this space.

INTRODUCTION

A topology on a set X is a collection T of subsets of X, called the open sets, satisfying:

1. Any union of elements of T belongs to T,
2. Any finite intersection of elements of T belongs to T,
3. \emptyset and X belong to T.

We say (X, T) is a topological space [1].

There is another structure called m-structure space defined as follows

Let X be a nonempty set a collection T of subsets of X is called minimal structure on X (m-structure) if \emptyset and X belong to T.[2]

Clear that every topological space is m-structure space. The above two structures play as principal structures for many others structures for example a bitopological space is two collections T_1 and T_2 of subsets of X such that (X, T_1) and (X, T_2) are topological spaces ,a set A called quasi open if $A=W \cup V$ where W belong to T_1 and V belong to T_2. In all these structures the intersection of any collection of open sets not necessary open set this means in topological space the kernel of a set $A = \cap \{ u : A \subseteq u, u \text{open set} \}$ [3]is not necessary open set ,so the quasi kernel of a set $A = \cap \{ u : A \subseteq u, u \text{quasi open set} \}$ [4] is not necessary quasi open set.
In this work we define a new concept (as we know) called a free intersection space as follows let X be a nonempty set a collection T of subsets of X is called a free intersection space on X (F-space) if:
1. X belong to T
2. Any intersection of element of T belong to T

This idea comes from the fact (in group structure) the intersection of any collection of subgroups is a subgroup and the group itself a subgroup, more than the intersection of any collection of closed sets is closed set. It is clear that the collection of closed sets (in topological space) is F-space and we show that the converse is not true in general.

The property (2) implies that the kernel belongs to T, so the kernel of a set or element will be important to define basic definitions in this structure.

1. Structure of F-space

Definition(1.1) Let X be a non-empty set a subcollection of \(P(X) \) is called free intersection space (F-structure space) simply (F-Space) if \(\mathcal{F} \) satisfies the following:
1. X belong to \(\mathcal{F} \)
2. Any intersection of element in \(\mathcal{F} \) belong to \(\mathcal{F} \).

Definition(1.2) Each member in \(\mathcal{F} \) is called F-open and the complement of F-open is called F-closed.

The following example (1.3.1) shows that the F-Space is not collection of closed sets (for some topological space), by other word the complement of it is sets not topology on X.

Examples (1.3)
1. Let \(X = \{1,2,3,4,5\} \) and \(\mathcal{F} = \{X, \{1\}, \{1,2,3\}, \{1,4\}, \{1,5\}\} \), then \((X, \mathcal{F})\) is F-space.
2. Let G be a group and \(\mathcal{F} \) the set of all subgroups of G, then \((G, \mathcal{F})\) is F-Space called F-space induced by group.
3. Let M be an R-module and \(\mathcal{F} \) be the set of all submodules of M, then \((M, \mathcal{F})\) is an F-space called F-space induced by module.
4. Let \((X,T)\) be a topological space and \(\mathcal{F} \) be the set of all closed sets in X, then \((X, \mathcal{F})\) is an F-space called F-space induced by topology.

Definition(1.4) Let \((X, \mathcal{F})\) be an F-space and A be a subset of X, then:
1. The set of intersection of all F-open which contains A is called F-kernel
of A and is denoted by \(\text{ker}(A) \).

2- The union of all F-closed which is contained in A is called interior closure of A and denoted by \(\text{Ic}(A) \).

3- The union of all F-open which is contained in A is called F-interior of A and denoted by \(\text{F-Int}(A) \).

Remark (1.5)

By definition of F-space and F-kernel, the F-kernel of any set is F-open and it is smallest F-open contains A (that is any F-open contains A must contain \(\text{ker}(A) \)).

Lemma (1.6) Let \((X, \tau)\) be an F-space and A be a subset of X, then \(\text{Ic}(A) \) is F-closed.

Proof: since \(\text{Ic}(A) = \bigcup \{ G_i : i \in \lambda \} \) such that \(G_i \subseteq A \) and \(G_i \) is F-closed \(\forall \ i \in \lambda \), then \(\text{Ic}(A) = \bigcup \{ (X-U_i) : i \in \lambda \} \) such that \(X-U_i = G_i \) and \(U_i \) is F-open and \(\text{Ic}(A) = X-(\bigcap U_i) \), then \(\bigcap U_i \) is F-open by definition of F-space, then \(\text{Ic}(A) \) is F-closed.

This means \(\text{Ic}(A) \) is largest F-closed set contained in A.

Theorem (1.7) Let \((X, \tau)\) be an F-space and A,B are subsets of X, then

1- \(\text{ker}(A) = A \) iff A is F-open.

2- \(\text{Ic}(A) = A \) iff A is F-closed.

3- \(\text{Ic}(X-A) = X-\text{ker}(A) \)

4- \(X-\text{Ic}(A) = \text{ker}(X-A) \)

5- if \(A \subseteq B \), then \(\text{ker}(A) \subseteq \text{ker}(B) \)

6- \(\text{ker}(A \cap B) \subseteq \text{ker}(A) \cap \text{ker}(B) \)

7- \(\text{ker}(A) \cup \text{ker}(B) \subseteq \text{ker}(A \cup B) \)

Proof:

1- Since ker(A) is F-open, then A is F-open set.

Conversely: since A \(\subseteq A \) and A is F-open then by remark (1-5) \(\text{ker}(A) \subseteq A \) but \(A \subseteq \text{ker}(A) \) by the same remark, then \(\text{ker}(A) = A \).

2-since \(\text{Ic}(A) \) is F-closed, then A is F-closed.

Conversely: Since A \(\subseteq A \), then A \(\subseteq \text{Ic}(A) \), but \(\text{Ic}(A) \subseteq A \), then \(\text{Ic}(A) = A \).

3- \(\text{X-ker}(A) = X-\bigcap \{ U_i : i \in \lambda, A \subseteq U_i \} \) is F-open

\[= \bigcup \{ X- U_i : i \in \lambda, A \subseteq U_i \} \text{ is F-open} \]
\[= \bigcup \{ X- U_i : i \in \lambda, X-A \subseteq X-U_i \} \text{ is F-open} \]
\[= \text{Ic}(X-A) \]
4- \(\text{X-Ic}(A) = \text{X-} \bigcup \{G_i : i \in \lambda, G_i \subseteq A, G_i \text{ is F-closed}\} \)
 = \bigcap \{\text{X-G}_i : i \in \lambda, G_i \subseteq A, G_i \text{ is F-closed}\}
 = \bigcap \{\text{X-G}_i : i \in \lambda, X-A \subseteq \text{X-G}_i, G_i \text{ is F-closed}\}
 = \ker(X-A)

5- \(\text{Ker}(B) = \bigcap \{U_i : i \in \lambda, U_i \text{ is F-open}\} \), for any \(i \in \lambda \) \(B \subseteq U_i \) (by def. of kernel)
 Now \(A \subseteq B \subseteq U_i \) for any \(i \in \lambda \), then \(A \subseteq \text{Ker}(B) \), but \(\text{Ker}(B) \) is F-open set,
 then \(\text{Ker}(A) \subseteq \text{Ker}(B) \) by (1-5)

6- Since \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \), then by (5) \(\text{Ker}(A \cap B) \subseteq \text{Ker}(A) \) and
 \(\text{Ker}(A \cap B) \subseteq \text{ker}(B) \), therefore \(\text{Ker}(A \cap B) \subseteq \text{ker}(A) \cap \text{Ker}(B) \).

7- Since \(A \subseteq A \cup B \) and \(B \subseteq A \cup B \), then by (5) \(\text{Ker}(A) \subseteq \text{Ker}(A \cup B) \) and
 \(\text{Ker}(B) \subseteq \text{Ker}(A \cup B) \) therefore \(\text{Ker}(A) \cup \text{Ker}(B) \subseteq \text{Ker}(A \cup B) \).

Definition (1.8) Let \((X, \tau)\) be F-space and \(A \subseteq X, y \in X \),
1- \(y \) is called F-interior element of \(A \) in case \(\text{Ker}(y) \subseteq A \).
2- \(y \) is called F-external element of \(A \) in case \(\text{Ker}(y) \subseteq X-A \).
3- \(y \) is called F-frontier element if \(\text{Ker}(y) \cap A \neq \phi \) and \(\text{Ker}(y) \cap (X-A) \neq \phi \)
 \((y \) is not F-interior point of \(A \) and not F-external point of \(A \)).

4- \(A \) is called locally F-open set if \(A \) is the union of F-open sets that is
 \(A = \bigcup \{U_i : U_i \text{ is F-open } i \in \lambda\} \).

5- \(\text{Ker}(A) \cap \text{Ker}(X-A) \) is called open frontier of \(A \) and is denoted by \(\text{OFr}(A) \).

Theorem (1.9) Let \((X, \tau)\) be F-space and \(A \subseteq X \), the set \(A \) is locally F-open
if and only if \(A = \bigcup \{\text{Ker}(x) : x \in A\} \).

Proof: suppose \(A \) is locally F-open then \(A = \bigcup \{U_i : U_i \text{ is F-open } i \in \lambda\} \).
 Let \(x \in A \), then \(x \in U_i \) for some \(i \in \lambda \), that is \(\text{Ker}(x) \subseteq U_i \).
 Now \(A \subseteq \bigcup \{\text{Ker}(x) : x \in A\} \subseteq \bigcup \{U_i : U_i \text{ is F-open } i \in \lambda\} = A \), then
 \(A = \bigcup \{\text{Ker}(x) : x \in A\} \).

Conversely: Since \(\text{Ker}(A) \) is F-open set, then \(A \) is locally F-open.

The above theorem means that every element in any locally F-open set is F-interior element (i.e. F-int(A) = A).
Corollary (1.10) Every F-open set is locally F-open.

Proof: Let A be an F-open set. Since \(\{x\} \subseteq A \), then \(\text{Ker}(x) \subseteq A \), but \(A \subseteq \bigcup \{\text{Ker}(x): x \in A\} \), then \(A = \bigcup \{\text{Ker}(x): x \in A\} \) and by theorem (1-9) A is locally F-open. ■

The converse of corollary (1-10) is not true in general to show that see the following example

Example (1.11) Let \((Z_6, \mathfrak{Z}) \) be F-space induced by the group \(Z_6 \), then \(A = \{[0],[2],[3],[4]\} \) is locally F-open but A not F-open.

Theorem (1.12) Let \((X, \mathfrak{Z}) \) be F-space and \(A \subseteq X \), then \(A \cup \text{OFr}(A) = \text{Ker}(A) \).

Proof:
\[
A \cup \text{OFr}(A) = A \cup (\text{Ker}(A) \cap \text{Ker}(X-A)) \\
= (A \cup \text{Ker}(A)) \cap (A \cap \text{Ker}(X-A)) \\
= \text{Ker}(A) \cap X = \text{Ker}(A).
\]

■

Definition (1.13) Let \((X, \mathfrak{Z}) \) be F-space and \(A \subseteq X \), \(a \in X \)

1. A is called F-dense set in case \(\text{Ker}(A) = X \).
2. a is called center element in case \(\text{Ker}(a) = X \).
3. a is called singular element in case \(\text{Ker}(a) = \{a\} \).

Remark (1.14)
1. Every set have center element is F-dense , since \(X = \text{Ker}(a) \subseteq \text{Ker}(A) \), then \(X = \text{Ker}(A) \), but the converse is not true to show that in example (1.11)
2. If A is F-dense set, then \(\text{OFr}(A) = \text{Ker}(X-A) \), since \(\text{Ker}(A) \cap \text{Ker}(X-A) = X \cap \text{Ker}(X-A) = \text{Ker}(X-A) \).
3. If a is center element, then
 a) a is not external element for any non empty set, since \(\text{Ker}(a) \cap A = X \cap A = A \neq \phi \)
 b) a is Frontier element for every non empty set, since \(\text{Ker}(a) \cap A = X \cap A = A \neq \phi \).

And \(\text{Ker}(a) \cap (X-A) = X \cap (X-A) = X-A \neq \phi \).
4. If a is singular element, then a is external element of every non-empty set contains a , since \(\text{Ker}(a) \cap A = \{a\} \cap A = \phi \) if \(a \notin A \).

2. The continuity

In this section X and Y means F-space
Definition (2.1) A function \(f: X \to Y \) is called F-continuous at a point \(a \) in \(X \) if \(f(Ker(a)) \subseteq Ker(f(a)) \) and \(f \) is called F-continuous on \(X \) if it is F-continuous on each \(a \) in \(X \).

Theorem (2.2) Let \(f:X \to Y \) be a function, then \(f \) is F-continuous if and only if for each locally F-open \(V \) in \(Y \) \(f^{-1}(V) \) is locally F-open in \(X \).

Proof: Suppose \(f \) is F-continuous. Let \(V \) be locally F-open in \(Y \) and \(a \in f^{-1}(V) \), then \(f(a) \in V \). Since \(V \) is locally F-open, then \(Ker(f(a)) \subseteq V \). Now \(f \) is F-continuous, then \(f(Ker(a)) \subseteq Ker(f(a)) \subseteq f^{-1}(V) \), but \(Ker(a) \subseteq f^{-1}(f(Ker(a))) \), thus \(Ker(a) \subseteq f^{-1}(V) \), therefore \(f^{-1}(V) \) is locally F-open.

Conversely: Let \(a \in X \), then \(f(a) \in Y \), since \(Ker(f(a)) \) is locally F-open, then \(f^{-1}(Ker(f(a))) \) is locally F-open. Now \(a \in f^{-1}(Ker(f(a))) \) is locally F-open, then \(Ker(a) \subseteq f^{-1}(Ker(f(a))) \), thus \(f(Ker(a)) \subseteq f(f^{-1}(Ker(f(a)))) \subseteq Ker(f(a)) \), therefore \(f \) is F-continuous function.

Definition (2.3) A function \(f: X \to Y \) is called strongly F-continuous in case for each F-open \(V \) in \(Y \), \(f^{-1}(V) \) is F-open in \(X \).

Theorem (2.4) Every strongly F-continuous function is F-continuous function.

Proof: Let \(f:X \to Y \) be strongly F-continuous and let \(V \) be locally F-open in \(Y \), then \(V = \bigcup \{ U_i : i \in \lambda \} \) where \(U_i \) is F-open for any \(i \in \lambda \). Now \(f^{-1}(V) = f^{-1}(U_i) = \bigcup f^{-1}(U_i) \), since \(f \) is strongly F-continuous, then \(f^{-1}(U_i) \) is F-open in \(X \) for any \(i \in \lambda \), thus \(f^{-1}(V) \) is locally F-open in \(X \), therefore \(f \) is F-continuous.

The converse of theorem (2.4) is not true to show that see the following example.

Example (2.5) Let \(X = \mathbb{Z}_6 \) and \(Y = \mathbb{Z}_4 \) and \(f:X \to Y \) defined by \(f([0]) = [0], f([1]) = [1], f([2]) = [2], f([3]) = [0], f([4]) = [2], f([5]) = [1] \), then \(f \) is F-continuous but not strongly F-continuous.

Theorem (2.6) A function \(f:X \to Y \) is strongly F-continuous iff for every F-closed \(G \) in \(Y \), \(f^{-1}(G) \) is F-closed in \(X \).

Proof: Let \(f \) be strongly F-continuous function and \(G \) is F-closed in \(Y \) then \(G = Y - U \) such that \(U \) is F-open in \(Y \), thus \(f^{-1}(G) = f^{-1}(Y - U) = X - f^{-1}(U) \). Since \(f \) is strongly F-continuous then \(f^{-1}(U) \) is F-open in \(X \) therefore \(f^{-1}(G) = X - f^{-1}(U) \) is F-closed in \(X \).
Conversely: Let U be F-open in Y, thus $f^{-1}(U) = f^{-1}(Y-G)$ such that G is F-closed, then $Y-U$ is F-closed in Y, therefore $f^{-1}(Y-U)$ is F-closed in X. hence $f^{-1}(Y-U)= X - f^{-1}(U)$, $f^{-1}(U)$ is F-open in X therefore f is strongly F-continuous. ■

Example(2.7) Every homomorphism group (R-module) is strongly F-continuous.

REFERENCES

