ON PROPERTIES OF S^{∞}-CONTINUOUS FUNCTIONS
Hadi J. Mustafa, Ahmed W. Shehab, Ahmed M. Rajab
Mathematical Department,
Collage of Mathematics and Computer Science
Kufa University

Abstract
In this work, we study S^{∞}-continuous functions, a function $f : X \rightarrow Y$ is called S^{∞}-continuous function if the inverse image of every semi-open set in Y is semi open in X. Several properties of these functions are proved.

1. Introduction and Preliminaries:

Let (X,T) be a topological space, let $A \subseteq X$, closure of A and interior of A are denoted by clA, $IntA$ respectively A is called semi-open [3] if $A \subseteq cl/int A$ every open set is semi open but the converse is not necessarily true.

Definition 1.1:
Let $f : (X,T) \rightarrow (Y,\Omega)$ be a function, we say that:

a) f is semi-continuous (S-continuous) [2] if the inverse of every open set in Y is semi open in X.

b) f is semi-continuous if the inverse image of every semi-open in Y is open in X.

c) f is semi-continuous if the inverse image of every semi-open in Y is semi-open in X.

2. Certain forms of S^{∞}-continuous functions

In this section, we introduce and study several forms of S^{∞}-continuous functions.

We recall the following definitions.

Definition 2.1:[4]

a) Let (X,T) be a topological space, let $B \subseteq X$, we say that B is semi-closed if B^{c} is semi open in X.

b) Let $B \subseteq X$, the semi-closure of B ($scl(B)$) is the intersection of all semi-closed sets in X containing B.

c) Let $F \subseteq X$, we say that F is semi-generalized closed in X (sg-closed) if $(F \subseteq O \Rightarrow scl(F) \subseteq O$ (O is semi-open in X).

Now we are ready to introduce a weak form of S^{∞}-continuous function which we call $A-S^{\infty}$-continuous function.

Definition 2.2:
Let $f : (X,T) \rightarrow (Y,\Omega)$ be a function, we say that f is $A-S^{\infty}$-continuous function if $F \subseteq f^{-1}(O) \rightarrow scl(F) \subseteq f^{-1}(O)$ (O is semi-open in Y, F is sg-closed in X) Of courses, if f is S^{∞}-continuous function then f is $A-S^{\infty}$-continuous function.

Example 2.3:
Let $X = \{a,b\}, T = \{\Phi, X, \{a\}\}$, Define $f : X \rightarrow X$ as follows:

$f(a) = b$, $f(b) = a$

Now $A = \{a\}$ is open and hence semi-open, consider $f^{-1}(A) = \{b\}$

Now $\{b\}$ is semi closed in X so the inverse of every semi open in X is semi closed which shows that f is $A-S^{\infty}$-continuous function.

$(F \subseteq f^{-1}(O) \rightarrow scl(F) \subseteq scl(f^{-1}(O) = f^{-1}(O))$,$\quad$But f is not S^{∞}-continuous function.
Because \(\{a\} \) is semi open in \(X \) and
\[
f^{-1}(\{a\}) = \{b\}.
\]
Which is not semi open in \(X \) \(\{b\} \notin cl\{b\} \).
Before, we state the next theorem, we need the following definition.

Definition 2.4 [3]
Let \(f : (X, T) \to (Y, \Omega) \) be a function, we say that \(f \) is Contra \(S^{\infty} \)-continuous if the inverse of every semi-open in \(Y \) is semi-closed in \(X \).

Theorem 2.5:
Let \(f : (X, T) \to (Y, \Omega) \) be contra \(S^{\infty} \)-continuous function, then \(f \) is \(A-S^{\infty} \)-continuous function.

Proof:
Let \(O \) be a semi-open in \(Y \), let \(F \) be \(A \)-closed in \(X \), let \(F \subseteq f^{-1}(O) \), then \(scl(F) \subseteq scl(f^{-1}(O)) = f^{-1}(O) \). Because \(f^{-1}(O) \) is semi-closed in \(X \) which means that \(f \) is \(A-S^{\infty} \)-continuous function.

Theorem 2.6:
Let \(f : (X, T) \to (Y, \Omega) \) be a function from a topological space \((X, T) \) into a topological space \((Y, \Omega) \). If the semi-open and semi-closed sets of \((X, T) \) coincide, the \(f \) is \(A-S^{\infty} \)-continuous function if and only if \(f \) is contra \(S^{\infty} \)-continuous function.

Proof:
Assume \(f \) is \(A-S^{\infty} \)-continuous function. Let \(A \) be an arbitrary subset of \((X, T) \) such that \(A \subseteq W \), where \(W \) is semi-open in \(X \), then by hypothesis \(scl(A) \subseteq scl(W) = W \), therefore all subset of \((X, T) \) are \(sg \)-closed (and hence all are \(sg \)-open) so,
for any \(O \) which is semi-open in \(Y \), \(f^{-1}(O) \) is \(sg \)-closed. \(scl(f^{-1}(O)) \subseteq f^{-1}(O) \).

Therefore \(scl(f^{-1}(O)) = f^{-1}(O) \), i.e. \(f^{-1}(O) \) is semi-closed in \(X \), which means that \(f \) is contra \(S^{\infty} \)-continuous function.

Corollary 2.7:
Let \(f : (X, T) \to (Y, \Omega) \) be a function from a topological space \((X, T) \) into a topological space \((Y, \Omega) \). If the semi-open and semi-closed sets of \((X, T) \) coincide, then \(f \) is \(A-S^{\infty} \)-continuous if and only if \(f \) is \(S^{\infty} \)-continuous.

Proof:
Let \(f \) be \(A-S^{\infty} \)-continuous function, let \(O \) be semi-open in \(Y \), we will show that \(f \) is \(S^{\infty} \)-continuous in \(X \).

Now \(f^{-1}(O) \) is \(sg \)-closed (Theorem 2.6), \(f^{-1}(O) \subseteq f^{-1}(O) \Rightarrow scl(f^{-1}(O)) \subseteq f^{-1}(O) \).

Which means that \(f^{-1}(O) \) is semi-closed in \(X \). But the semi-open and semi-closed sets in \(X \) coincide, so \(f^{-1}(O) \) is semi-open in \(X \) so \(f \) is \(S^{\infty} \)-continuous.

Another proof, According to theorem 2.6, If \(f \) is \(A-S^{\infty} \)-continuous then \(f \) contra \(S^{\infty} \)-continuous, let \(O \) be semi-open in \(X \), hence \(f^{-1}(O) \) is semi-open in \(X \), so \(f \) is \(S^{\infty} \)-continuous.
Definition 2.8: Let \(f : (X, T) \rightarrow (Y, \Omega) \) be a function, we say that \(f \) is perfectly contra-\(S^\infty \)-continuous function if the inverse of every semi-open in \(Y \) is semi-clopen in \(X \) (that is semi-open and semi-closed).

Before, we state the next theorem we need the following definition.

Definition 2.9: Let \(f : (X, T) \rightarrow (Y, \Omega) \) be a function we say that \(f \) is \(A \)-semi closed if \(\sin(A) \subset f^{-1}(\text{scl}(A)) \) and \(f^{-1}(\text{scl}(A)) \subset \text{scl}(A) \) for \(A \) is \(sg \)-open subset of \(Y \), \(B \) is semi-closed subset of \(X \).

Theorem 2.10: Let \(f : (X, T) \rightarrow (Y, \Omega) \) be \(S^\infty \)-continuous function and \(A \)-semi closed then \(f^{-1}(A) \subset \text{sg-closed} \) whenever \(A \subset \text{sg-closed} \subset Y \).

Proof: Let \(A \) be \(sg \)-closed subset of \(Y \), suppose \(f^{-1}(A) \subset \text{O} \) (\(O \) is semi-open in \(X \)).

Now \(O' \subset f^{-1}(A') \) hence \(f(O') \subset A'^c \), then \(f(O') \subset \text{sin}(A') = (\text{scl}(A))^c \) it follows that \(O' \subset (f^{-1}(\text{scl}(A)))^c \) and hence,

\[(f^{-1}(\text{scl}(A))) \subset O \] since \(f \) is \(S^\infty \)-continuous, then \((f^{-1}(\text{scl}(A))) \subset \text{semi-closed} \).

Thus we have \((f^{-1}(A)) \subset \text{scl}(f^{-1}(\text{scl}(A))) = f^{-1}(\text{scl}(A)) \subset O \), This implies that \(f^{-1}(A) \subset \text{sg-} \text{closed} \subset X \).

References

[1] Hadi J.Mustafa,contra –B-continuous functions(Kufa University conference 2008)

المستخلص:

\(S^\infty \) تسمى دالة مستمرة - ا.دالة الدالة \(f : X \rightarrow Y \). إذا كانت الصورة النظيرية لأي مجموعة شبه مفتوحة في \(X \) مجموعة شبه مفتوحة في \(Y \). برهنا مجموعة خصائص لهذه الدوال.