ISOLATION, IDENTIFICATION OF SOME FUGAL ISOLATES AND TESTING THEIR ABILITY FOR LIPOXYGENASE PRODUCTION

Department of Food Science, Faculty of Agriculture, University of Basra , Basrah, Iraq.

(Received 24 January 2017 , Accepted 13 March 2017)

Key words: Fungi , Aspergillus niger , Lipoxygenase.

ABSTRACT

Eighty three local isolates of fungi were isolated from different resources (Peanuts, maize, rice, wheat, bread, domestic cheese of sheep, Milk local Cream, Iranian cream, Roquefort cheese and soil). These isolates were purified and identified, it include 14 isolates of Aspergillus flavus, 13 Aspergillus niger, 8 Aspergillus terreus, 3 Aspergillus parasaticus, 3 Alternaria spp., 15 Penicillium spp., 7 Fusarium spp., 5 Trichoderma spp., 11 Rhizopus spp. and 7 Mucor spp. The ability of isolates for producing aflatoxin were tested, the toxic isolates (Aspergillus flavus, Aspergillus terreus, and Aspergillus parasaticus) were removed. Aspergillus niger which was isolated from maize was choosing as the best lipoxygenase producer after Primary and secondary screening. The growth of the selected isolate colonies had the largest proportion than the Colonies of Penicillium sp. and Trichoderma sp. all so the same isolate had high enzymatic activity 801.4 units/ml, while Penicillium sp. and Trichoderma sp. had (559.2 and 120) units/ml respectively.

INTRODUCTION

Filamentous fungi are eukaryotes that digest food extremely and absorb nutrients directly through its sell wall. Most of fungi reproduce by spores and have a body (thallus) composed of microscopic tubular cells called hyphae. Aspergillus niger is one of the filamentous fungus with black colonies so that it usually known as black mold(5). It exist in all over the world in extend, although it causes the food
as well as the rest of fungi. However, it was used in many fermentation in biotechnology such as organic acids production like citric acid, gluconic acid and enzymes production such as lipase and amylase\(^{(38,1)}\). In spite of its usability exhaustion many of organic material which is necessary to produce enzymes\(^{(4)}\). *A. niger* is one of the mold using in bio-technology processing because it is safe in food, while some of *A. niger* strains may be distinguish itself via production of mycotoxins fungal\(^{(36)}\).

Lipoxygenase (LOX) (linoleate: oxygen oxido reductase; EC:1.13.11.12) discovered first time in 1928 by Haas and Bohn when they observe the loss of yellow color from wheat flour sample after adding small amount of soybean flour. Lipoxygenase is a group of oxidized enzyme including non-hemiiron atom in its effective atom as well as it is stimulates to molecular of oxygen\(^{(33,23)}\). These enzymes are link the oxygen with unsaturated fatty acid such as arachidonic and linolenic and linoleic to produced peroxides and hydroperoxides\(^{(28)}\), these free radicals are able to oxidase the sulpha hydreal groups of wheat flour proteins and form bi-sulphide bonds which strengthen the gluten, they found that the LOX extracted from soybeans for bleaching and increase the stability of wheat flour and improvement the rheological properties. LOX plays an important role in developing the flavor compounds such as the carbonate and alcohol compounds through produced of different type of peroxides isomers\(^{(19)}\), which contain one of flavor compounds. LOX has special importance to produce aromatic compounds because it gives unique properties because it range of hydroperoxide isomers \(^{(11,9)}\). LOX it exist widely in plant and animal kingdom and Micro-organisms\(^{(13,17)}\). LOX differs in substrate so essential fatty acids exist naturally such as linoleic acid (18: 2) and acid linolenic (18: 3) and arachidonic acid works as enzymes substrate \(^{(34)}\).

Due to the lack of studies in LOX production from Micro-organisms in Iraq and because of the importance of this enzyme, and its role in food products, So this study aims to obtain some local fungal isolates for LOX production.
MATERIALS AND METHODS

Source of isolation: Many natural sources were collected for isolation of fungi (peanut, maize, local gamer, Iranian cream, local sheep cheese, blue cheese mold (Italian-made), bread, wheat, rice and soil Faculty of Agriculture) which were transferred to plastic containers sterile by UV at 254 nm for 15 minutes then the sample left at room temperature and air to enhance fungal growth before isolation.

Isolation of fungi: Each sample was transferred directly to sterile petri dishes contained Potato dextrose agar (PDA) and incubated for (28-30)°C \ (3-5) days (15). After that a Part of colony for each fungi was transferred by a needle to another sterile petri dishes with new PDA (31, 25). This step was repeated three times till the colonies in each petri dishes became pure, then these fungal isolates were kept on slant of PDA at 4°C (3).

Detection of Aflatoxins: Ammonia vapor method were adopted according to (32) to choose the viability of fungal isolates which was isolated from various sources to produce aflatoxin, through using coconut extract agar (CEA) which was prepared by (14).

Identification of isolated fungi: The isolates identified according to their morphological properties when growth on the PDA, The identification was at the level of genus and species according to classification keys mentioned in (29, 20, 27), the isolates were examined by using the morphological test for fungal colonies and microscopic test by using lacto phenol solution with the blue cotton dye (24).

Preparing of spore suspension: The new growing fungal colonies with these pores on the slant of PDA were suspended with dist. water (12), then the spores were calculated by using Haemocytometer slide and light microscope. The spore suspension was diluted by distill water to the number of spores (1×10^6)spore / ml (35, 26).

Screening of fungal isolates for lipoxygenase production:

Primary screening (growth on PDA): The non-toxic isolates were testing by using the growth on PDA at 28°C \ 5 day. The chosen isolates were with big diameters of colonies (16, 22).
Secondary screening (growth in PD medium):
Sterile PD medium (50)ml was used in a conical flask (100)ml capacity and inoculated with 1 ml of spores suspension(1×10^6) spore / ml and incubated in shaking incubator at 85 rpm \ min , 30 °C\ 7 days according to (30).

Extraction of lipoxy genase from biomass:
After incubation, the broth was filtered by what man filter paper no.1. The biomass was washed with deionized dist. water, then smashed by mortar and glass beads. After that, centrifugation at 10000 rpm \ min for 10 min, then the precipitate was removed and used the supernatant as extracted enzyme (30).

Estimation of lipoxy genase activity:
The activity of the enzyme was estimated according to (21). 0.5 ml of enzyme solution added to 10ml of substrate (1gm of linoleic acid dissolved in 100 ml ethanol 95%) and mixed then incubated for 3minutes. at 30°C.The reaction was stopped by addition 5ml of acidified ethanol solution (5ml of ethanol 95% and 0.1 ml of hydrochloric acid) to 1ml enzyme-substrate reaction solution (enzyme solution and substrate solution) and left for 2min. To this solution 0.015μl of ammonium ferrous sulfate 5% (5gm from ammonium ferrous sulfate dissolving in solution 3% hydrochloric acid and completed the volume to 100ml from HCl) and 0.5ml of ammonium thiocyanate solution(20gm from ammonium thiocyanate dissolved in deionized water and completed the volume to 100ml from deionized water)were added mixed, and the absorbance were measured at 480nm using spectrophotometer. The calibration solution(blank) solution prepared from deionized water instead of enzyme solution and substrate solution and completed the previous steps, Lipoxy genase activity was assayed by definition unit enzymatic activity.

\[
\text{Activity} = \frac{\text{The change in the absorption}}{\text{The volume of the enzyme (ml) \times time (minutes)}} \times 60
\]
Secondary screening (fungal capability of LOX production growing on liquid solution-PD by measuring the LOX activity)

The isolated fungi were growth on liquid PD in order to produce LOX from selected using shaking incubator, inoculation glass flasks 100 ml contain 50 ml of media inoculated by 1 ml of spore suspension the flask incubated at a temperature of 30°C for 7 days and incubated at 85 cycles/min. After incubation the control media filtering by paper Whitman No.1 to get the biomass washed by ions distilled water then crushed by mortar using glass balls then centrifuge 10,000 rev/min then the separated of sludge stuck taking which represents the enzyme to assess the activities.

RESULTS AND DISCUSSION

Eighty three pure local isolates belong to 7 species of fungus was obtained as in this study Table 1 and Figure (1) indicated the fungus isolates which was obtained and purified on PDA after growing in incubator at (28 -30)°C for (3-5) days.

<table>
<thead>
<tr>
<th>Sources</th>
<th>Number of isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peanuts</td>
<td>11</td>
</tr>
<tr>
<td>Maize</td>
<td>10</td>
</tr>
<tr>
<td>Rice</td>
<td>7</td>
</tr>
<tr>
<td>Wheat</td>
<td>9</td>
</tr>
<tr>
<td>Bread</td>
<td>15</td>
</tr>
<tr>
<td>local cheese of sheep</td>
<td>9</td>
</tr>
<tr>
<td>Milk local gamer</td>
<td>5</td>
</tr>
<tr>
<td>Iranian cream</td>
<td>4</td>
</tr>
<tr>
<td>Roquefort cheese</td>
<td>4</td>
</tr>
<tr>
<td>Soil</td>
<td>9</td>
</tr>
<tr>
<td>Total isolates</td>
<td>83</td>
</tr>
</tbody>
</table>
Figure (1) Some of the pure fungal isolates which were grown on PDA

Detection of fungal isolates producing aflatoxin:

The results showed that there were 22 fungal isolates which produce aflatoxin, 11 isolates belong to *A. flavus*, 8 isolates belonging to *A. terreus* and 3 isolates belonging to *A. parasiticus* (according to physical appearance). The results indicated that these isolates have the ability to change the color to coconut extract agar as in Figure 2 from white to pink after one hour of incubation also after 24 hours of incubation with ammonia steam at 5°C. This result indicate a confirmative detection for production of aflatoxins. While the other isolates given negative results which were *A. niger*, *Alternaria* sp., *Fusarium* sp., *Trichoderma* sp., *Penicillium* sp., *Mucor* sp. and *Rhizopus* sp. This agree with.
Figure (2) Two samples of fungal isolates which were grown on CEA
1: A.niger (non-aflatoxins producer) 2: A. flavus (aflatoxin producer)

fungal Identification:

The fungal isolate identified according to the appearance (color, shape and nature of the growth) as well as microscopic test, according to dependable references \(^{(29,20-27)}\) and 7 isolates of fungal species were isolated as in table (2), and *Aspergillus* was appeared to be predominant in different types *A.niger* and *A.flavus*, while the other species Figure 3 were *Penicillium* sp., *Alternaria* sp., *Fusarium* sp., *Trichoderma* sp., *Rhizopus* sp. and *Mucor* sp.

1: *A.niger* pure colonies growing on PDA. 2: sporeof *A.niger* under the microscope
3: *Penicillium* sp. pure colonies growing on PAD.

4: Spores of *Penicillium* sp. under the microscope

5: *Trichoderma* sp. pure colonies growing on PAD.

6: Spores of *Trichoderma* sp. under the microscope

Figure (3) The morphological and microscopic tests of the selected fungal isolates for LOX production.
Table (2) numbers of identified fungal isolates which were isolated from different sources

<table>
<thead>
<tr>
<th>fungal isolates</th>
<th>Peanut</th>
<th>Maize</th>
<th>Roquefort cheese</th>
<th>local cheese of sheep</th>
<th>Milk local gamer</th>
<th>Iranian cream</th>
<th>Bread</th>
<th>Wheat</th>
<th>Rice</th>
<th>Soil</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus flavus</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aspergillus terreus</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Aspergillus parasiticus</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Alternaria sp.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Mucor sp.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>83</td>
</tr>
</tbody>
</table>
Fungal isolates frequency:

Table (3) illustrated that the highest frequency was 18.07 for *Penicillium sp.* Followed by *Aspergillus niger* 15.66, while *Aspergillus parasiticus* and *Alternaria sp.* showed the lowest frequency.

<table>
<thead>
<tr>
<th>S</th>
<th>Fungal isolates</th>
<th>Number</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspergillus flavus</td>
<td>11</td>
<td>14.45</td>
</tr>
<tr>
<td>2</td>
<td>Aspergillus niger</td>
<td>13</td>
<td>15.66</td>
</tr>
<tr>
<td>3</td>
<td>Aspergillus terreus</td>
<td>8</td>
<td>9.63</td>
</tr>
<tr>
<td>4</td>
<td>Aspergillus parasiticus</td>
<td>3</td>
<td>3.61</td>
</tr>
<tr>
<td>5</td>
<td>Alternaria sp.</td>
<td>3</td>
<td>3.61</td>
</tr>
<tr>
<td>6</td>
<td>Penicillium sp.</td>
<td>15</td>
<td>18.07</td>
</tr>
<tr>
<td>7</td>
<td>Fusarium sp.</td>
<td>7</td>
<td>8.43</td>
</tr>
<tr>
<td>8</td>
<td>Trichoderma sp.</td>
<td>5</td>
<td>6.02</td>
</tr>
<tr>
<td>9</td>
<td>Rhizopus sp.</td>
<td>11</td>
<td>13.25</td>
</tr>
<tr>
<td>10</td>
<td>Mucor sp.</td>
<td>7</td>
<td>8.43</td>
</tr>
</tbody>
</table>

PDA was used for primary screening of fungal isolates which was non-toxic\(^{(16,22)}\). The numbers of these isolates 61 which were isolated from various sources. The results proved that *A. niger* which was isolated from the maize, *Trichoderma sp.* from local sheep cheese and *Penicillium sp.* from the blue cheese were which given large diameter when growing on PDA comparing with other isolates sources Figure (4).
It has been depend on the colonies diameter when selecting the isolate which produce enzyme. The fungal isolates compared depending on enzymatic activity for the crude enzymatic extracted for each one after growing on liquid media to make the secondary screening\(^{(37)}\). 24 fungal isolates were selected with big biomass and high enzymatic activity, these isolates belong to \(A.\) \textit{niger}, \textit{Penicillium} sp. And \textit{Trichoderma} sp. After that only 3 isolates were selected were belong to the same three genus for production of LOX. \(A.\) \textit{niger} was the best and this was agreed with\(^{(18)}\) but disagreed with\(^{(7)}\) he used \textit{Fusarium proliferatum}as fungal isolates for
production of LOX. The isolates belong to *A. niger* showed enzymatic activity ranged from (790.5 - 801.4) followed by *Penicillium* sp. Isolates (545.8-559.2) while the Trichoderma sp. Isolates showed less enzymatic effectiveness.

Table (4) screening of isolates growing on Modified Shown liquid medium (MSM)

<table>
<thead>
<tr>
<th>S</th>
<th>Fungal isolates</th>
<th>number</th>
<th>Rang activity (unit/ml)</th>
<th>The biomass weight rang(gm\100ml MSM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspergillus niger</td>
<td>11</td>
<td>790.5-801.4</td>
<td>0.3 – 0.9</td>
</tr>
<tr>
<td>2</td>
<td>Penicillium sp.</td>
<td>10</td>
<td>545.8-559.2</td>
<td>0.26 – 0.45</td>
</tr>
<tr>
<td>3</td>
<td>Trichoderma sp.</td>
<td>3</td>
<td>115-120</td>
<td>0.24 – 0.35</td>
</tr>
</tbody>
</table>

عزل وتشخيص بعض العزلات الفطرية وأختيار العزلات المنتجة لأنزيم الليبيوكسيجينيز

نورا طه ياسين التميمي ، آمال كاظم غضبان الأسدي ، ألاء غازي عيدان الهاشمي

قسم علوم الأغذية ، كلية الزراعة ، جامعة البصرة ، البصرة ، العراق.

الخلاصة

تم الحصول على 83 عزلة محلية للاعائن من مصادر مختلفة (الفول السوداني والذرة الصفراء والرز والحنطة والخنزير والذرة المحلي والقمح المحلي والقمح الذرة الإيرانية وعين الروكفورت والترتيبة) إذا أجريت لها العمليات والتنقيح والتشخيص وتبين أن انت 5 عزلة لعن *Aspergillus flavus* و 13 عزلة لعن *Aspergillus parasiticus* و 3 عزلات لعن *Aspergillus terreus* و 8 عزلات لعن *rAspergillus Fusarium* و 7 عزلات لعن *Penicillium spp.* و 15 عزلة لعن *Alternaria spp.* و 7 عزلات لعن *Rhizopus spp.* و 11 عزلة لعن *Trichoderma spp.* و 5 عزلات لعن *Mucor spp.* و 7 عزلات لعن *Aspergillus sp arasaticus* و *Aspergillus flavus* و *Aspergillus terreus*، و *Aspergillus niger*.

تم اختيار العزالة الأكثراً *Aspergillus niger* من الذرة الصفراء بعد أجزاء عمليات الغريلة (الفول السوداني والذرة الصفراء) للعزلات الفطرية غير السمية. وتم النمو المستمرة للعزلات المنتجة ذو أبعاد أكبر من مستمرة ذاتها فعالية أنزيمية عالية مقدارها 801.4 وحدة/مل. في حين كانت (155.2 و 120) وحدة/مل على التوالي.

عفن *Trichoderma sp.* و *Penicillium sp.*
REFERENCES

38-Vadey, H. M. (2010). Study the feasibility of some of the filamentous fungi to produce antioxidants and the possibility of their use in food systems, Master Thesis, Faculty of Agriculture, University of Basra.

40-Zawehra, successful HashimKadhim. (2011) production and characterization of the enzyme Alaneulenaz of the fungus *Aspergillus niger* isolated locally, doctoral dissertation, Faculty of Agriculture, University of Basra.