Study the differential Mott Scattering cross section and screening parameters of aluminum

Sabah Mahmoud Aman Allah

Muneer Ramadan Badah

Sahar Najee Rashaed

P.Box.O:42. Saladin – Physics Department - College of Sciences –Tikrit University, Iraq

Gmail: sabahmahmood6@gmail.com

Abstract:

In the present paper, we have tabulate the screening parameters $\eta_{screening}$ and the differential cross section of Mott scattering $\frac{d\sigma_{Mott}}{d\sigma_{Rutherford}}$ by Aluminum nucleus in the energy range (10-0.005) MeV and angles ($\theta = 15^0 - 180^0$) by employing Mackinely-Fashbach equation as well as we have calculate the ratio $\frac{d\sigma_{Mott}}{d\sigma_{Rutherford}}$ For the energy range (50-350) MeV for the same angles, by using the improved Rutherford equation. All these equation written with Visual Basic program 2012. By comparing the obtained results with the available one, we found that the factor $\eta_{screening}$ proportional with the incident electron energy, which influences the screening process of the orbital electrons by the atomic nucleus, thus lowering the Bremsstrahlung probability cross section, while the values of $\frac{d\sigma_{Mott}}{d\sigma_{Rutherford}}$ with Mackinely-Fashbach equation, are in good agreement with the compared values, and the cross section obtained by
improved Rutherford equation, shows that the effect of recoiling term is the biggest in comparison to other correction factors.

Keywords:

Mott scattering, screening, Mackinely-Fashbach equation, spin correction, nuclear size.

Please note that the text is in English and I cannot translate the Arabic text for you.
المقاطع العرضي التفاضلي $\eta_{\text{screening}}$ و المقطع العرضي التفاضلي $\frac{d\sigma_{\text{Mo}}}{d\sigma_{\text{Rutherford}}}$ لاستطارة موت وت ($\theta=10-0.005$)MeV بواسطة نواة الألمنيوم ضمن مدى الطاقات V للزوايا ($180-15$) باستخدام معادلة مكينلي فيشباخ وبحساب نسبة المقطع العرضي لتشتت موت ونوى الطاقات ($50-350$)MeV لنفس الزوايا باستخدام معادلة رذرفورد المطورة، وبحسب القائمة المكاملة ببرنامج Visual Basic 2012 كتب جميع المعادلات باستعمال برنامج برمجة Visual Basic 2012 مع ما متفرع منها فيفتاح أن العامل $\eta_{\text{screening}}$ عليها، مع ما متفرع منها فيفتاح أن العامل $\eta_{\text{screening}}$ ظاهرة حجب الكترونات المدارية على الشحنات النوية وبالتالي تتناقص المقابل العرضي لاحتمالية توليد استطارة التوقف اما نسبة المقطع التفاضلي باستخدام معادلة مكينلي فيشباخ تظهر تطابق جيد مع نموذج القدرة فحسب من التأثير الكبير لعامل الارتباك النووي على قيم المقطع العرضي لتشتت موت باستخدام معادلة رذرفورد المطورة بالمقارنة مع عوامل التصحح الأخرى.

الكلمات المفتاحية: تشتيت موت، الحجب، معادلة مكينلي فيشباخ، تصحيح البرم، الحجم النووي.

1-مقدمة:

يعترف تشتيت موت بأنه عملية استطارة الكترون بواسطة مركز تشتيت ثقيل ويطلق عليها اسم التشتيت المرئي بسبب كتلته النواة با المقارنة مع كتلته الكترون الساقط والتي تفوقها.

Web Site: www.kujss.com Email: kirkukjourscai@yahoo.com, kirkukjourscai@gmail.com
ببضعه الآلاف المرات ذ تكون كمية الطاقة المنطقاه في هااااالتفاعل صغيره جدا بعض الكترونون ideal probe مسبار مثالى، وذلك لانه لا يتعى من قبل النواة الذرية ويتفاعل عن طريق القوى الكهرمغناطيسية حيث ان هذه القوة تكون صىوية بالمقارنة مع القوى النووية، ولذلك فإن موجة الكترون تخترق العمق النووي nuclear interior بسهولة، اضاف الى ذلك يمكن توليد حزم الكترونية ذات شدة عاية واستخدامها في اجراء قياسات معينة حتى وان كان المقطع العرضي صغيره[1].

ان استطارة للإلكترونات او مساحة المقطع العرضي بواسطة النواة تعد احد اهم التفاعلات بين الكترونات والذرى، والتي ترتبط بالحبوح الأساسية fundamental والتطبيقية، مثل معدل المسار الحر للإلكترونات في العناصر اذا ان الكثير من المعلومات الذرية والنووية، والمتعلقة بفيزياء الجسيمات قد تم اكتشافها من خلال تجارب النشط[2-4]، ويعتبر exact formulas من خلال استخدام حل partial–wave method من خلال استخدام حل Darowins solution لاتطق بورون وان انها اخذت بنظر الاعتبار تأثير الحجب screening effect من قبل الإلكترونات المدارية والثانية اهلت ذلك التأثير. وعلى مر السنوات الاخيرة اجتذب هذا المجال اهتمام الكثير من الباحثين في منتصف القرن الماضي وتحديد [6-7] Yadav، Feshbach، Zbigniew et als، Sherman، Doggett and Spencer، Curr، M.J.Boschini et als، و

ان الهدف من البحث الحالي هو وضع مساحة المقطع التفاضلى لتشتت 문ات\(\sigma_{\text{Mott}}\) و\(\sigma_{\text{Rutherford}}\) (وهي كمية عددية الوحدات) لانصص المنيوم بصيغة تحليلية form (ممثل استخدام طريقة السلاسل المتقاربة converging series) ضمن مدى الطاقات العالى (50-350MeV) بعد ادخل تيكون في البرم ارداد النواة و الحجم النووي لمعدلة Rutherford المضطرة وقمنا بحساب معادلات الحجب ومساحة المقطع المره لتشتت مووت للطبقات الوافدة (10MeV-5keV) للكترونات السااقة ولكن مدى الزوايا وتم كتابة جميع المعادلات المستخدمة ببرنامج فيجول بيسك 2012 ومقارنتها مع ما توفر من نتائج.

2-الحسابات:

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
$\frac{d\sigma}{d\Omega}$

2-1 مساحة المقطع العرضي التفاضلي

ان استطارة كولومب Coulomb scattering هو مصطلح عام يستخدم لوصف التفاعلات المرنة بين جسيميين مشحونين حيث الجسيم القاضي ذو الطاقة العالية والهدف. ان المقطع العرضي التفاضلي المرنة ذات أهمية أساسية في نظرية الاستطارة والتي تنتج من انحراف حزمة الالكترونات بواسطة نواة موجبة الشحنة المحتسبة بواسطة الالكترونات المدارية.[11]. تمثل احتمالية تشتت الالكترون الساقط لكل وحدة زاوية صلبية $d\Omega$ لذرة الهدف والتي تعتبر عنها رياضياً بالمعادلة الآتية [12]

$$\frac{d\sigma}{d\Omega} = |f|^2$$

(1)

حيث ان f دالة معقدة complex function تمثل سعة الاستطارة أو معامل الاستطارة الذرية. حيث أن A هو الجسيم والشكل (1) يوضح مفهوم المقطع العرضي التفاضلي. حيث أن B هو الهدف قبل وبعد التفاعل والعنصر $d\Omega$ يمثل الجزء المكير لمساحة المقطع العرضي التفاضلي، ويقدس بوحدة البارن والتي تساوي

$L barn = 10^{-24} cm^2 = 100 fm^2$

: screening parameter

ان احتمالية فقدان أي جسيم مشحون لطاقته الحركية أثناء عملية التصادم تعتمد على مسافة التأثير بين الالكترون والذرة الهدف وبدائل الوصف الكلاسيكي لهذا التفاعل، عندما يكون عامل السhaft البنيك هو أكبر بكثير من نصف قطر الالكترون الشائع من قبل الاكترونات المدارية بحيث يفقد المجال النووي ويشكل كبير جدا تأثيره على الجسيمات القاسية الداخلة عليه وهذا التأثير يعرف بالحجب التام [14] (Complete screening).

لاحظ الشكل التوضيحي (2).

Web Site: kirkukjoursci@yahoo.com, www.kujss.com
شكل (1) : مفهوم مساحة المقطع العرضي.

ويرافقها انبعاث اشعة بطول موجي كبير [15] وبالعكس تماما إذا كان معامل الصدم اصغر بكثير من الاقطار الذرية فائتانا تتوقع عدم حدوث أي تأثيرات ظاهرة الحجب حيث ان الجسم القاسف يتأثر بالجاح الكهربائي يمكن معاملته كتربيب لمجال كولوم لشحنة نقطية (Ze) من مركز النواة [16]. إن حساب معاملات الحجب تعد ضرورية جدا وذلك لكي تمنع مسارات قيمة المقطع العرضي المرني الى الملايئه infinite عند اجراء التكامل لجميع زوايا الاستطارة [17]. ومن ابرز معادلات الخاصة بمعاملات الحجب التي استخدمت بالدراسة ηscreening [18].

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
Least squares fitting

\[\delta = 1.198 \text{ for } E_K^0 < 50 \text{keV} \quad \ldots \ldots \quad (3) \]

\[\delta = 1.13 + 3.76 \frac{Z^2}{137\beta} \text{ for } E_K^0 \geq 50 \text{keV} \quad \ldots \ldots \quad (4) \]

where \(\delta \) is the parameter that describes the deviation from the linear least squares fit.

These equations are used to calculate the parameters for different energy ranges of the electron.

\[\sigma_{\text{Rutherford}} = \frac{d\sigma}{d\Omega} = \frac{Ze^2}{4\pi\varepsilon_0 \left(\frac{1}{2}mv^2\right)} \]

This formula represents the differential cross section for Rutherford scattering, where \(Z \) is the atomic number, \(e \) is the electron charge, \(\varepsilon_0 \) is the vacuum permittivity, and \(m \) and \(v \) are the mass and velocity of the electron, respectively.

[24] Shyn-Cho

[22] Nishimura

[23] Danjo

Applying these equations, we can determine the behavior of electrons in different energy ranges and understand their scattering properties.
حبيط انها شحنة وكتلته الکترون على التوالی. الا ان العالمین Mckinley و qe وهما اکثر
قاما بتطوير نتيجة موتت الاصلیة لیتضمن عامل تصحيح البرم (المتمثلة
باالحد الثاني في المعادلة 8 ادناء) لفرض تصحيح تقريب بورن المستخدم في الاشتاق الاصلی
للمعادلة موتت ویتمثل بالعلاقة
\[
\frac{d\sigma_{\text{Mott}}}{d\sigma_{\text{Rutherford}}} = 1 - \beta^2 \sin^2 \left(\frac{\theta}{2}\right) + \pi Z\beta\alpha \left(\sin\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)\right)
\]\\
حيث أن \(\beta = 1/137\) ثابت التركيب الدقيق وهذه العلاقة صحيحة لـ \(\beta = 1\) وهي صحيحة للحالة
الضعیفة
استخدمت هذه المعادلة ضمن مدى الطاقة (500-10) میکا الکترون فولت لزوايا
\(\alpha \leq 0.2\) (180-15 درجة).

3-معادلة المقطع العرضي التفاضلی المصححة لاستطارة موتت
ان الغرض من ادخال عوامل التصحيح لمعادلة المقطع العرضي التفاضلی لشئت موتت
نطیرة النشیت لمستوى فوق نظریة رنگرود عند زيادة الطاقة الساقطة
لالکترونات أكثر من 10MeV [25], الا انه في نفس الوقت يعمل على تعقيد المعادلة الرياضیة
المستخدمه. ويمكن تلخيص هذه العوامل كما يأتي:

فـ 1- عامل تصحيح البرم : \(f_{\text{spin}}\)

ان معادلة حساب مقطع العرضی لاستطارة موتت عند الطاقات العالية تتمثل بعامل تصحيح
البرم من خلال solid angle وبدالة الزاوية الصلدة Spin correction factor \(f_{\text{spin}}\)

الخطوات الاتتیة [26,16]

\[
\frac{d\sigma_{\text{Mott}}}{d\Omega} = \frac{d\sigma}{dq} \frac{dq}{d\Omega} = \frac{1}{2\pi} \frac{d\sigma}{dq} \frac{dq}{d(\cos\theta)} = \frac{1}{4\pi} \frac{d\sigma}{dq} \frac{p}{\sin\left(\frac{\theta}{2}\right)} \\
\frac{d\sigma_{\text{Mott}}}{d\Omega} = \frac{2}{q^3} \left(\frac{Z\alpha e^2}{\beta}\right)^2 \frac{p}{\sin\left(\frac{\theta}{2}\right)} \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right)
\]

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
ویراکش رافعی مطابق به آن معادله فضایی از اکلترون (\(\nu \approx c\) نیست) لا یعتمد
عامل تصویب برم علی طاقته الحکم \(E^0_K\) للکترونات الساقطة وانما علی زاویه الاستطارة \(\theta\).

3-2 عامل تصویب الطاقة الارتدادیة للنواة : \(f_{recoil}\) بیمثت حد التشنجت الغیر المرن ويتم عبر عن
n\(f_{recoil}\) علی الطاقة الحکم للکترونات المستطاره (المرتفع \(E_K\)) علی الطاقه الحکم للکترونات الساقطة ویحسب من قوائین حفظ الزخم والطاقة خلال عملیة الاستطارة وكما میین في
الشكل ادناه[13,16].

ویراکش لتفاسیر الیزیة المتعلقة باشتقاق عامل تصویب الارتداد النووي فان العلاقة
الخاصة لهذه الدالة \(f_{recoil}\) هی [14]

\[f_{recoil} = \frac{E_K}{E_K^0} = \frac{1}{1 + \frac{E_K^0}{M c^2} (1 - \cos \theta)} = \frac{1}{1 + \frac{2E_K^0}{Mc^2} \sin^2 \left(\frac{\theta}{2}\right)} \](10)
اذن نلاحظ اعتماد العامل f_{recoil} على الطاقة الحركية للإلكترون الساقط E_K^0 والكتلة السكونية f_{recoil} للنواة الهدف θ وعند الزوايا الصغيرة $1 \approx 0$ زاوية الاستطارة المرنة Mc^2 النظر عن قيمة E_K^0.

3-2 عامل تصحيح الحجم النووي:

$$f_{\text{size}}(q)$$

عندما تكون الإلكترونات الساقطة ذات طاقات عالية (أكثر من 10MeV)، يجب أن يأخذ بالحسبان، تأثير الحجم المحدد للنواة (أي يعني آخر النواة ليست شحنة نقطية وإنما لها تركيبها الخاص إذ أنها مكونة من نيتروتات وبيروتونات والتي تدورها تملك تركيبها الخاص والمتمثل بالكواركات (Quarks) وتؤثر على توزيعات الاستطارة المتعددة [28]. فلقد قام [27]multiple scattering distributions بدراسات نظرية وعملية Hofstadter شاملة لاستطارة الالکترون- النواة ونال جائزة نوبل عام 1911 حيث فسر التنافض الواضح بين النتائج العملية والنظرية لنظرية استطارة مووتر (المعادلة 11) إلى تأثيرات الحجم النووي للنواة وعالج هذه المعقدة من خلال استخدام عامل تصحيح التركيب النووي $f_{\text{size}}(q)$ والذي يعرف بالمعادلة الآتية [29]:

$$f_{\text{size}}^2(q) = \frac{4\pi\hbar}{qZe} \int_0^r r\rho(r)\sin b(r)dr[4\pi \int_0^r r^2dr]^{-1}$$

ونتيجة هذا التكامل هو المعادلة الآتية

$$f_{\text{size}}(q) = 3[\sin(b) - b\cos(b)]b^{-3} (11)$$

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
ذوائبية التشتت و q هو الزخم المنitel بفعل عدم اهمال ارتداد النواة ويعرف

\[\sin b(r) \]

بورية المعادلة [30]

\[q^2 = (p - \dot{p})^2 = 2m_0^2c^2 - 2 \frac{E_E}{c^2} - |p||\dot{p}|\cos\theta \approx - \frac{4E_E}{c^2} \sin^2 \left(\frac{\theta}{2} \right) \] (12)

تمثل الزخم الرباعي للحالة النهائية (الابتدائية) للكترون وان C هو سرعة الضوء في الفراغ هو مقدار الزخم النسبي للكترون والتي تعرف بالمعادلة [30]

\[E = \sqrt{(pc)^2 + (mc)^2} \] (13)

وتعريف الرموز الآتية [29]

\[b = \left(\frac{Rq}{hc} \right) \]

واما العامل

\[R = R_0A^\frac{1}{3} = 1.21A^\frac{1}{3}fermi \] (14)

حيث عوضتنا عن hc = 197.3MeV.fm

حيث عوضنا عن البرم (معادلة 9) وتصحيح الطاقة الارتدادية للنواة (معادلة 11) وتصحيح الحجم النووي (معادلة 22) بعد اجراء التكامل بطريقة التجزئة الصيغة النهائية لحساب مساحة المقطع العرضي التفاضلي لاستطارة مووت بالصيغة [3]

\[\frac{d\sigma_{Mott}}{d\Omega} = \frac{d\sigma_{Rutherford}}{d\Omega} f_{spin} \frac{f_{recoile}^2}{f_{size}^2 (q)} \] (15)

أو بالصيغة النهائية

\[\frac{d\sigma_{Mott}}{d\sigma_{Rutherford}} = f_{spin} \frac{f_{recoile}^2}{f_{size}^2 (q)} \] (16)

من ملاحظة المعادلة (15) نجد ان مركبة استطارة رذرفورد هي الأكثر تأثيرا تلك لان حاصل ضرب عاملي البرم وارتداد النواة والحجم النووي تكون بمثابهة الوحدة الواحدة فيما عدا

\[\frac{d\sigma_{Rutherford}}{d\Omega} \]

أذا كانت الزاوية قريبة من 180 درجة أو طاقة الکترون الساقط كبيرة. ان الحد يعطى بالمعادلة (6) والتي تكون صحيحة للطاقة الواطنة جدا.

4-الحسابات والنتائج:
الجدول (2) يمثل قيم ثابت الحجب للكترونات الساقطة على نوافذ ذرة المينيوم والمحمولة من تطبيق المعادلات (4-6). تبين هذه القيم تزايد الطاقة الحركية للكترونات بتنافص معامل الحجب ويمكن تفسير هذا السلوك هو عندما تكون طاقة الكترون الساقط واطئة فإنه يقضي معظم زمن تفاعل الحجب مع الإلكترونات المدارية، مما يؤدي إلى زيادة قيم ثابت الحجب بينما يحصل العكس للطاقة العالية الساقطة إذ لا تتأثر بشكل كبير من هذه الظاهرة. ان حجب النواة بواسطة توزيع الشحنة الإلكترونية المدارية النتيجة سوف يؤثر على عملية اشعة التوقف cross bremsstrahlung process وان هذا التأثير يعمل على تقليل مساحة المقطع section الساقطة من قبل الذرة وكما موضح بالشكل 6.

اما الجدول (3) فهو يمثل مقارنة بين القيم Q screening المحوسوبة من تطبيق المعالة (8) وقيم المقارنة [3] ضمن المدى الطاقة (E=0.005-10MeV) والتي تظهر تقارب مقبول بين القيم ماذا الزوايا الكبيرة ضمن المدى (150° - 180°) حيث يوجد فارق بنسبة خطا يمكن حسابه من العلاقة

\[
Error = \left| \frac{Exp - The}{The} \right| \times 100\% \text{.........................(17)}
\]

حيث تبلغ نسبة الخطا فبعد الزاوية (150°) والطاقة E=10MeV تكون نسبة الخطا 1.9% بينما لأقل طاقة حركية للإلكترون الساقط يساوي 2.0% ما بالنسبة لزاوية E=0.005MeV والطاقة (165°) (لاحظ الأشكال ، ويرجع سبب هذا الاختلاف إلى اعتماد معادلة مكينلي فيشباخ على الفرضيات والتقريبات (مثل تقريب بورن الثانى والذي يشتق أساسا من نظرية الاضطراب الكمیة) عند استغراق هذه المعادلة والتي تبين ان تشتت الكترون يعتمد بشكل رئيسي على عدد الحالات الكمیة المتوفرة والتي يستطار إليها الإلكترون وهذا بدوره يستند على اتجاها النسب للبرم الإلكترون الساقط على النواة .

اما الجدول (7) فهو ناتج من تطبيق المعادلة (16) ضمن مدى الطاقة (E=15-350MeV) وبالاستعانة بالمعادلات (9,11,14) والتي نتج عنها قيم التصميمات للبرم والطاقة الارتدادية والحمم النووية والممثلة بالجداول (6,7,8) من ملاحظة قيم الجدول لمساحة المقطع لتشتت

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
موزت ، نجد انها تتبع سلوك دوري الصلبة سبيحات نوعين من التفاعلات[30] وهي:
- التصادم القاسي: Hard scattering
- التصادم المرن: Bremsstrahlung

يتسبب فقدان الطاقة بشكل طفيف اشعة التباطئ المستمر ويتمثل في انحراف الإلكترونات بزوايا كبيرة جدا بفعل فارق الكتلة مع نواة المنيوم حيث ان $m_p = 1836m_e$، وتحديدا بتفاعلك الإلكترون الساقط مع البروتون والذي يحدد التوزيع المكاني لها. على حد علم الباحثين لم نحصل على نتائج اخرى لغرض المقارنة مع نتائجنا الحالية ضمن الطاقة الساقطة.

حيث نلاحظ أن كل ان عامل تصحيح الطاقة الارتدادية تكون أكبر ما يمكن واقليه هو قيم عامل تصحيح البرمي والأقل من كل ذلك عامل تصحيح الحجم النووي لا حظ عند الطاقة لساقطة 200MeV والزاوية ($\theta = 90^0$) ان قيم الثوابت التصحيح هي $f_{recoil} = 3.7 \times 10^{-10}$ و $f_{spin} = 0.500$

عمال التصحيح الاخير الذي يعمل على تقليل احتمالية التشتت الحاسم بشكل فعال ، بمعنى تقليل مساحة المقطع العرضي التفاضلي DCS وخصوصا عند الزوايا الكبيرة فعلى سبيل المثال عند الطاقة 250MeV عند ($\theta = 150^0$) تساوي $T = 5.08 \times 10^{-12}$ اما عند الزاوية ($\theta = 165^0$) وعند الطاقة 150MeV تبلغ $T = 27.7 \times 10^{-11}$

5-الاستنتاجات

أن طاقة الإلكترون الساقط تتحكم بزيادة او تناقص قيم ثابت الحجب ، فإذا زادت القيمة سوف يؤدي ذلك الى تناقص مساحة المقطع لا نتاج اشعة التباطئ ، وبالعكس اذا تناقصت قيمة ثابت الحجب سوف تزداد مساحة المقطع لا نتاج اشعة التباطؤ.

ان تطبيق معادلة مكينلي-فيشباخ تعطي نتائج جيدة ونسبة الخطأ الناتجة بالمقارنة مع [3]

ناتجة من الفرضيات والتقريبات المستخدمة في اشتقاق المعادلة المستخدمة في الدراسة الحالية.

ان مساحة المقطع التفاضلي لتستقبل موزت باستخدام معادلة رنرفورد المحدثة اخذت بنظر

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
الاعتبار اهم التصحيحات وانعم عامل يتحكم بقيمة مساحة مقطع موريت هو عامل التشاص التغير

المرن والمتمثل ب

\[f_{\text{recoil}} \]

جدول رقم (2): عناصر الحجب (عديد الوحدات) لمختلف الطبقات الساقطة والناصرة من تطبيق

معادلة (2-4).

<table>
<thead>
<tr>
<th>E(MeV)</th>
<th>(\tau)</th>
<th>(\eta_{\text{screening}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.009784</td>
<td>(5.7751 \times 10^{-3})</td>
</tr>
<tr>
<td>0.025</td>
<td>0.048923</td>
<td>(1.1328 \times 10^{-3})</td>
</tr>
<tr>
<td>0.050</td>
<td>0.097840</td>
<td>(5.7073 \times 10^{-3})</td>
</tr>
<tr>
<td>0.100</td>
<td>0.195690</td>
<td>(2.1138 \times 10^{-3})</td>
</tr>
<tr>
<td>0.250</td>
<td>0.489230</td>
<td>(5.7464 \times 10^{-4})</td>
</tr>
<tr>
<td>0.500</td>
<td>0.978470</td>
<td>(2.1141972 \times 10^{-4})</td>
</tr>
<tr>
<td>1.0</td>
<td>1.9569470</td>
<td>(7.4092 \times 10^{-5})</td>
</tr>
<tr>
<td>2.5</td>
<td>4.8923600</td>
<td>(1.63924 \times 10^{-5})</td>
</tr>
<tr>
<td>5</td>
<td>9.7847350</td>
<td>(4.754 \times 10^{-6})</td>
</tr>
<tr>
<td>10</td>
<td>19.569500</td>
<td>(1.2954 \times 10^{-6})</td>
</tr>
<tr>
<td>50</td>
<td>97.847350</td>
<td>(1.09428 \times 10^{-7})</td>
</tr>
<tr>
<td>100</td>
<td>196.69470</td>
<td>(1.4134111 \times 10^{-8})</td>
</tr>
<tr>
<td>150</td>
<td>293.54207</td>
<td>(6.3029827 \times 10^{-9})</td>
</tr>
<tr>
<td>200</td>
<td>391.38943</td>
<td>(3.55 \times 10^{-9})</td>
</tr>
<tr>
<td>250</td>
<td>489.23679</td>
<td>(2.275 \times 10^{-9})</td>
</tr>
<tr>
<td>300</td>
<td>587.08414</td>
<td>(1.579 \times 10^{-9})</td>
</tr>
<tr>
<td>350</td>
<td>684.31500</td>
<td>(1.16218 \times 10^{-9})</td>
</tr>
</tbody>
</table>

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com,
kirkukjoursci@gmail.com
شكل (6): قيم معامل الحجب مع طاقة الإلكترونات الساقطة على نواة المنيوم.
Present study
Ref[3]

<table>
<thead>
<tr>
<th>O</th>
<th>10MeV</th>
<th>5MeV</th>
<th>2.5MeV</th>
<th>1MeV</th>
<th>0.5MeV</th>
<th>0.25MeV</th>
<th>0.1MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.01608400</td>
<td>1.01935</td>
<td>1.05073351</td>
<td>1.0173930</td>
<td>1.01772856</td>
<td>1.01792</td>
<td>1.0198884</td>
</tr>
<tr>
<td>30</td>
<td>0.989545</td>
<td>0.990870</td>
<td>0.992035</td>
<td>0.99679</td>
<td>1.00405</td>
<td>1.01241</td>
<td>1.01899</td>
</tr>
<tr>
<td>45</td>
<td>0.924553</td>
<td>0.941029</td>
<td>0.928622</td>
<td>0.941460</td>
<td>1.039937</td>
<td>0.986555</td>
<td>1.0115</td>
</tr>
<tr>
<td>60</td>
<td>0.825472</td>
<td>0.824311</td>
<td>0.832984</td>
<td>0.856297</td>
<td>0.894891</td>
<td>0.943088</td>
<td>0.994506</td>
</tr>
<tr>
<td>75</td>
<td>0.701724</td>
<td>0.704450</td>
<td>0.713404</td>
<td>0.750650</td>
<td>0.818036</td>
<td>0.886297</td>
<td>0.970150</td>
</tr>
<tr>
<td>90</td>
<td>0.563363</td>
<td>0.567246</td>
<td>0.579646</td>
<td>0.631420</td>
<td>0.714216</td>
<td>0.821284</td>
<td>0.941062</td>
</tr>
<tr>
<td>105</td>
<td>0.405186</td>
<td>0.409604</td>
<td>0.442370</td>
<td>0.508807</td>
<td>0.615262</td>
<td>0.753583</td>
<td>0.909871</td>
</tr>
<tr>
<td>120</td>
<td>0.286965</td>
<td>0.292911</td>
<td>0.312144</td>
<td>0.392370</td>
<td>0.521110</td>
<td>0.688796</td>
<td>0.879596</td>
</tr>
<tr>
<td>135</td>
<td>0.169306</td>
<td>0.179874</td>
<td>0.192948</td>
<td>0.291110</td>
<td>0.439046</td>
<td>0.631534</td>
<td>0.852858</td>
</tr>
<tr>
<td>150</td>
<td>0.07977270</td>
<td>0.0756795</td>
<td>0.111460</td>
<td>0.212751</td>
<td>0.375496</td>
<td>0.588169</td>
<td>0.831955</td>
</tr>
<tr>
<td>165</td>
<td>0.0225648</td>
<td>0.031036</td>
<td>0.056221</td>
<td>0.163223</td>
<td>0.33531062</td>
<td>0.56034256</td>
<td>0.8186590</td>
</tr>
<tr>
<td>180</td>
<td>0.0036301</td>
<td>0.00114147</td>
<td>0.0372937</td>
<td>0.146293</td>
<td>0.321563</td>
<td>0.550785</td>
<td>0.814109</td>
</tr>
</tbody>
</table>

Web Site: www.kujs.com Email: kirkukjournsci@yahoo.com, kirkukjournsci@gmail.com
<table>
<thead>
<tr>
<th>Present study</th>
<th>Present study</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.01284</td>
<td>1.01008</td>
</tr>
<tr>
<td></td>
<td>1.01245</td>
<td>1.00942</td>
</tr>
<tr>
<td>30</td>
<td>1.01911</td>
<td>1.01670</td>
</tr>
<tr>
<td></td>
<td>1.01719</td>
<td>1.01535</td>
</tr>
<tr>
<td>45</td>
<td>1.01920</td>
<td>1.01999</td>
</tr>
<tr>
<td></td>
<td>1.01257</td>
<td>1.01562</td>
</tr>
<tr>
<td>60</td>
<td>1.013865</td>
<td>1.02029</td>
</tr>
<tr>
<td></td>
<td>0.999364</td>
<td>1.01034</td>
</tr>
<tr>
<td>75</td>
<td>1.004215</td>
<td>1.01813</td>
</tr>
<tr>
<td></td>
<td>0.979316</td>
<td>1.00055</td>
</tr>
<tr>
<td>90</td>
<td>0.991591</td>
<td>1.014151</td>
</tr>
<tr>
<td></td>
<td>0.954730</td>
<td>0.987676</td>
</tr>
<tr>
<td>105</td>
<td>0.977475</td>
<td>1.009081</td>
</tr>
<tr>
<td></td>
<td>0.928157</td>
<td>0.973315</td>
</tr>
<tr>
<td>120</td>
<td>0.963370</td>
<td>1.003661</td>
</tr>
<tr>
<td></td>
<td>0.902167</td>
<td>0.959045</td>
</tr>
<tr>
<td>135</td>
<td>0.95069</td>
<td>0.998598</td>
</tr>
<tr>
<td></td>
<td>0.87914</td>
<td>0.946304</td>
</tr>
<tr>
<td>150</td>
<td>0.940684</td>
<td>0.994496</td>
</tr>
<tr>
<td></td>
<td>0.861131</td>
<td>0.936293</td>
</tr>
<tr>
<td>165</td>
<td>0.934276</td>
<td>0.991840</td>
</tr>
<tr>
<td></td>
<td>0.849672</td>
<td>0.929914</td>
</tr>
<tr>
<td>180</td>
<td>0.798134</td>
<td>0.990922</td>
</tr>
<tr>
<td></td>
<td>0.845743</td>
<td>0.927725</td>
</tr>
</tbody>
</table>

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
شكل (7): نسبة $\frac{d\sigma_{Mott}}{d\sigma_{Rutherford}}$ مع قيم الزوايا الإلكترونات الساقطة بطاقة 2.5MeV على نواة المنيوم.

شكل (8): نسبة $\frac{d\sigma_{Mott}}{d\sigma_{Rutherford}}$ مع قيم الزوايا الإلكترونات الساقطة بطاقة 5MeV على نواة المنيوم.
الشكل (9): نسبة $\frac{d\sigma_{Mott}}{d\sigma_{Rutherford}}$ مع قيم الزوايا الإلكترونات الساقطة بطاقة 10MeV على نواة المنيوم.
جدول (4) عامل تصحيح البرم \(f_{\text{spin}} \) والمدماة لطاقة 350MeV والنتائج من تطبيق المعادلة (9).

<table>
<thead>
<tr>
<th>(\theta) (\degree)</th>
<th>50MeV</th>
<th>100MeV</th>
<th>150MeV</th>
<th>200MeV</th>
<th>250MeV</th>
<th>300MeV</th>
<th>350MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.98297180</td>
<td>0.98297022</td>
<td>0.98297019</td>
<td>0.98297007</td>
<td>0.98297005</td>
<td>0.982970037</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.93302036</td>
<td>0.93301387</td>
<td>0.933013778</td>
<td>0.933013334</td>
<td>0.933013194</td>
<td>0.933013147</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.8535760</td>
<td>0.853562</td>
<td>0.85356169</td>
<td>0.85356615</td>
<td>0.853560424</td>
<td>0.853560292</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.7500275</td>
<td>0.7500032</td>
<td>0.7500003</td>
<td>0.75000105</td>
<td>0.750000725</td>
<td>0.75000055</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.6294407</td>
<td>0.6294048</td>
<td>0.62940421</td>
<td>0.630001554</td>
<td>0.62940798</td>
<td>0.629408451</td>
<td>0.629408732</td>
</tr>
<tr>
<td>90</td>
<td>0.500055</td>
<td>0.5000065</td>
<td>0.5000058</td>
<td>0.5000021</td>
<td>0.50000145</td>
<td>0.5000011</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>0.3706692</td>
<td>0.3706082</td>
<td>0.370607301</td>
<td>0.371002641</td>
<td>0.370601825</td>
<td>0.37660138</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.2500825</td>
<td>0.2500098</td>
<td>0.2500087</td>
<td>0.25000315</td>
<td>0.25000218</td>
<td>0.25000165</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>0.1465440</td>
<td>0.1464610</td>
<td>0.146459901</td>
<td>0.146453584</td>
<td>0.146452475</td>
<td>0.146451877</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.0671026</td>
<td>0.0670123</td>
<td>0.067010822</td>
<td>0.067003918</td>
<td>0.0670027</td>
<td>0.067002052</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>0.01811826</td>
<td>0.01704978</td>
<td>0.0170484</td>
<td>0.017043487</td>
<td>0.01704113</td>
<td>0.01703985</td>
<td>0.01703801</td>
</tr>
<tr>
<td>180</td>
<td>0.00010</td>
<td>1.3E-5</td>
<td>1.16E-5</td>
<td>6.6E-6</td>
<td>4.2E-6</td>
<td>2.9E-6</td>
<td>2.2E-6</td>
</tr>
</tbody>
</table>

جدول (5) عامل تصحيح الطاقة الارتدادية للنواعa \(f_{\text{recoil}} \) والمدماة من تطبيق المعادلة لمدماة الطاقة

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
<table>
<thead>
<tr>
<th>θ^0</th>
<th>50MeV</th>
<th>100MeV</th>
<th>150 MeV</th>
<th>200MeV</th>
<th>250MeV</th>
<th>300MeV</th>
<th>350MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.999932</td>
<td>0.999865</td>
<td>0.999798</td>
<td>0.99973</td>
<td>0.999663</td>
<td>0.999569</td>
<td>0.999529</td>
</tr>
<tr>
<td>30</td>
<td>0.000375</td>
<td>0.999471</td>
<td>0.999207</td>
<td>0.998942</td>
<td>0.998678</td>
<td>0.998414</td>
<td>0.998151</td>
</tr>
<tr>
<td>45</td>
<td>0.999421</td>
<td>0.998844</td>
<td>0.998267</td>
<td>0.997691</td>
<td>0.997116</td>
<td>0.996541</td>
<td>0.995967</td>
</tr>
<tr>
<td>60</td>
<td>0.999013</td>
<td>0.998028</td>
<td>0.997046</td>
<td>0.996065</td>
<td>0.995086</td>
<td>0.994109</td>
<td>0.993134</td>
</tr>
<tr>
<td>75</td>
<td>0.998538</td>
<td>0.997080</td>
<td>0.995627</td>
<td>0.994188</td>
<td>0.992745</td>
<td>0.991307</td>
<td>0.989973</td>
</tr>
<tr>
<td>90</td>
<td>0.998028</td>
<td>0.996065</td>
<td>0.994109</td>
<td>0.992161</td>
<td>0.990221</td>
<td>0.988288</td>
<td>0.986363</td>
</tr>
<tr>
<td>105</td>
<td>0.997520</td>
<td>0.995052</td>
<td>0.992596</td>
<td>0.990153</td>
<td>0.987721</td>
<td>0.985302</td>
<td>0.982894</td>
</tr>
<tr>
<td>120</td>
<td>0.997046</td>
<td>0.9941098</td>
<td>0.991190</td>
<td>0.988288</td>
<td>0.985403</td>
<td>0.982535</td>
<td>0.979633</td>
</tr>
<tr>
<td>135</td>
<td>0.996639</td>
<td>0.993302</td>
<td>0.989986</td>
<td>0.986693</td>
<td>0.983421</td>
<td>0.980171</td>
<td>0.976943</td>
</tr>
<tr>
<td>150</td>
<td>0.996328</td>
<td>0.992683</td>
<td>0.989064</td>
<td>0.985472</td>
<td>0.981906</td>
<td>0.978366</td>
<td>0.974851</td>
</tr>
<tr>
<td>165</td>
<td>0.996133</td>
<td>0.992297</td>
<td>0.988489</td>
<td>0.984711</td>
<td>0.980962</td>
<td>0.977241</td>
<td>0.973548</td>
</tr>
<tr>
<td>180</td>
<td>0.996065</td>
<td>0.992161</td>
<td>0.988288</td>
<td>0.984445</td>
<td>0.980632</td>
<td>0.976848</td>
<td>0.9730939</td>
</tr>
</tbody>
</table>

حالياً من تطبيق المعادلة (10)

E=50-350MeV

جدول (6) عامل تصحيح الحجم للنواة f_{size} و لمدى الطاقة $E=50-350MeV$

الناتجة من تطبيق المعادلة (11).

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
<table>
<thead>
<tr>
<th>Θ^0</th>
<th>50MeV</th>
<th>100MeV</th>
<th>150 MeV</th>
<th>200MeV</th>
<th>250MeV</th>
<th>300MeV</th>
<th>350MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4.99E-5</td>
<td>2.76E-5</td>
<td>4.37E-6</td>
<td>9.98E-7</td>
<td>2.73E-7</td>
<td>4.37E-6</td>
<td>6.15E-9</td>
</tr>
<tr>
<td>30</td>
<td>2.9E-5</td>
<td>1.036E-6</td>
<td>5.8E-8</td>
<td>2.75E-11</td>
<td>8.67E-9</td>
<td>5.78E-8</td>
<td>1.246E-8</td>
</tr>
<tr>
<td>45</td>
<td>4.76E-6</td>
<td>6.65E-8</td>
<td>3.03E-9</td>
<td>1.36E-8</td>
<td>1.10E-8</td>
<td>3.03E-9</td>
<td>1.07E-9</td>
</tr>
<tr>
<td>60</td>
<td>1.253E-6</td>
<td>2.39E-10</td>
<td>1.53E-8</td>
<td>2.37E-9</td>
<td>2.22E-9</td>
<td>1.334E-8</td>
<td>3.43E-10</td>
</tr>
<tr>
<td>75</td>
<td>3.39E-7</td>
<td>5.78E-9</td>
<td>1.72E-9</td>
<td>3.17E-9</td>
<td>1.07E-10</td>
<td>1.23E-8</td>
<td>1.1843E-10</td>
</tr>
<tr>
<td>90</td>
<td>1.33E-7</td>
<td>1.2E-8</td>
<td>7.65E-9</td>
<td>3.7E-10</td>
<td>3.82E-10</td>
<td>7.66E-9</td>
<td>2.52E-11</td>
</tr>
<tr>
<td>105</td>
<td>4.66E-8</td>
<td>1.38E-8</td>
<td>3.82E-9</td>
<td>2.06E-11</td>
<td>3.213E-10</td>
<td>3.81E-9</td>
<td>5.10E-11</td>
</tr>
<tr>
<td>120</td>
<td>1.2E-6</td>
<td>1.336E-8</td>
<td>1.62E-9</td>
<td>3.038E-10</td>
<td>4.05E-10</td>
<td>1.62E-9</td>
<td>1.10E-10</td>
</tr>
<tr>
<td>135</td>
<td>5.01E-8</td>
<td>1.178E-8</td>
<td>5.96E-10</td>
<td>5.16E-10</td>
<td>9.064E-11</td>
<td>5.95E-10</td>
<td>7.52E-11</td>
</tr>
<tr>
<td>150</td>
<td>1.5E-9</td>
<td>1.077E-8</td>
<td>1.97E-10</td>
<td>5.91E-10</td>
<td>6.817E-11</td>
<td>1.97E-10</td>
<td>3.2E-11</td>
</tr>
<tr>
<td>180</td>
<td>2.5E-12</td>
<td>9.6E-9</td>
<td>1.266E-8</td>
<td>5.8E-10</td>
<td>6.23E-11</td>
<td>4.17E-11</td>
<td>7.7E-12</td>
</tr>
</tbody>
</table>

$$\frac{\sigma_{\text{Mott}}}{\sigma_{\text{Rutherford}}}$$

جدول (7): قيم النسبة
المعادلة(16).
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4.816E-5</td>
<td>2.712E-5</td>
<td>4.295E-6</td>
<td>9.8E-7</td>
<td>2.682E-7</td>
<td>3.85E-6</td>
<td>6.04E-9</td>
</tr>
<tr>
<td>30</td>
<td>2.7E-5</td>
<td>0.966E-6</td>
<td>5.4E-8</td>
<td>2.563E-11</td>
<td>8.08E-9</td>
<td>5.348E-8</td>
<td>1.16E-8</td>
</tr>
<tr>
<td>45</td>
<td>4.06E-6</td>
<td>5.66E-8</td>
<td>2.582E-9</td>
<td>1.16E-8</td>
<td>9.36E-9</td>
<td>2.6E-9</td>
<td>9.1E-10</td>
</tr>
<tr>
<td>60</td>
<td>0.939E-6</td>
<td>1.79E-10</td>
<td>1.144E-8</td>
<td>1.733E-9</td>
<td>1.656E-9</td>
<td>9.94E-9</td>
<td>2.6E-10</td>
</tr>
<tr>
<td>75</td>
<td>2.5E-7</td>
<td>3.62E-9</td>
<td>1.094E-10</td>
<td>2.318E-9</td>
<td>6.68E-11</td>
<td>4.52E-11</td>
<td>4.34E-11</td>
</tr>
<tr>
<td>90</td>
<td>0.663E-8</td>
<td>5.976E-9</td>
<td>3.8E-9</td>
<td>1.84E-10</td>
<td>1.89E-10</td>
<td>3.79E-9</td>
<td>9.196E-12</td>
</tr>
<tr>
<td>105</td>
<td>1.668E-8</td>
<td>5.09E-9</td>
<td>1.4E-9</td>
<td>7.55E-12</td>
<td>1.18E-10</td>
<td>1.39E-9</td>
<td>1.88E-11</td>
</tr>
<tr>
<td>120</td>
<td>2.99E-7</td>
<td>3.32E-9</td>
<td>0.40E-9</td>
<td>0.75E-10</td>
<td>9.98E-11</td>
<td>0.397E-9</td>
<td>2.711E-11</td>
</tr>
<tr>
<td>135</td>
<td>0.7317E-8</td>
<td>1.7137E-9</td>
<td>8.64E-11</td>
<td>8.01E-11</td>
<td>1.3E-11</td>
<td>8.54E-11</td>
<td>1.08E-11</td>
</tr>
<tr>
<td>150</td>
<td>1.0E-10</td>
<td>7.16E-10</td>
<td>0.13E-11</td>
<td>3.9E-11</td>
<td>4.48E-12</td>
<td>1.29E-11</td>
<td>0.209E-11</td>
</tr>
<tr>
<td>165</td>
<td>6.41E-12</td>
<td>1.68E-10</td>
<td>27.7E-11</td>
<td>9.95E-12</td>
<td>0.045E-11</td>
<td>1.164E-12</td>
<td>0.02E-11</td>
</tr>
<tr>
<td>180</td>
<td>2.5E-16</td>
<td>1.238E-13</td>
<td>1.45E-13</td>
<td>37.68E-16</td>
<td>2.57E-16</td>
<td>1.18E-16</td>
<td>1.648E-17</td>
</tr>
</tbody>
</table>

المصادر

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com

