The Value Of 3 Tesla Magnetic Resonance Imaging In Assessment Of Clinically Diagnosed Temporomandibular Joint Disorders

Zeinab Ghadhanfer Hammoud B.D.S., H.D.D. (1)
Lamia Al – Nakib B.D.S.,M.Sc. (2)

ABSTRACT

Background: Temporomandibular joint disorder (TMD) is a general term that describe a wide variety of conditions that include myogenic pain, internal derangement, arthritic problem, ankylosis of the joint and growth disorders. The aims of study was to evaluate the value of 3 Tesla magnetic resonance imaging in asessment of articular disc position and configuration in patients with temporomandibular joint disorders and to evaluate the correlations of these MRI findings with the clinical signs and symptoms.

Materials and methods: A total forty six (30 study and 16 control) participants aged between 18 and 49 years, were examined according to Helkimo anamnestic index (questionnaire for anamnesis) and clinical dysfunction index scoring criteria which include clinical examinations of the range of mandibular mobility, impaired TMJ function, muscle pain, TMJ pain and pain during mandibular movement.

Results: There is statistically high significant difference between Helkimo anamnestic and clinical dysfunction indices in the cases group (with temporomandibular joint disorders) and controls group with MRI findings of disc position and disc configuration, that as the severity of indices increased, there were progression of disc displacement and disc deformity score and shows positive association expressed by significant probability (p) value.

Conclusion: There is a significant correlation between Helkimos’ anamnestic and clinical dysfunction indices and MRI findings in patients with internal derangement of temporomandibular joint.

Key words: TMJ, Helkimo indices, 3 T MRI.

INTRODUCTION

Temporomandibular joint (TMJ) dysfunction is a common condition that, according to some studies, affects up to 28% of the population (1). The most frequent structural (as opposed to muscular) cause of TMD are Internal derangement, which involves progressive slipping a displacement of component of temporomandibular joint called the articular disc (2). Internal derangement is defined as a mechanical fault of the joint that interferes with smooth joint function. This is attributed to abnormal interaction of the articular disc, condyle and articular eminence. Associated clinical features include articular pain and articular noises (3). The disc displacement is categorized based on the relation of the disc displacement with mandibular condyle. The displacement can be anterior, anterolateral, anteromedial, lateral, medial and posterior (4). Absence of ionizing radiation as well as excellent depiction and visualization of soft tissue, disc position and morphology, bone marrow changes, and joint effusions are among the advantages of MRI (5,6,7).

The 3T unit delivers images of better quality as regards evaluability of disc position and shape as compared to 1.5 T MR and thus provides added diagnostic assurance that is critical for therapeutic decisions (8).

In this study 3 Tesla MRI machine was used to evaluate temporomandibular joint in patients with internal derangement of TMJ.

MATERIALS AND METHODS

A prospective study was conducted on 46 patients were attended Oral and Maxillofacial Surgery Department in AL- Yarmouk Teaching Hospital that were refereed to clinic of Radiology for MRI from over the period of 5 months (September 2014 - February, 2015). The patients were selected and divided into two groups:

1. Case group thirty patients (18-49) years old (22 females and 8 males) were clinically diagnosed as having internal derangements of temporomandibular joint. All patients complain from pain in preauricular area and muscles of mastication, clicking or crepitation of TMJ, a limitation or deviation in mandibular range of motion, they were again grouped according to severity.
2. Control group sixteen participants (18-46) years old (10 females and six males) with normal TMJs.

The patients examined according to Helkimo anamnestic index and clinical dysfunction index scoring criteria of temporomandibular disorders which consists of standardized series of diagnostic tests based on clinical signs and symptoms. The clinical examination was done extra and intra orally.

A- Extra oral examination.

1. Determination of the mouth opening without pain and the mouth opening with pain (un-assisted mouth opening). This accomplished by measuring the inter-incisal distance plus the overbite when the patient open his mouth as wide as he could. A general guide for minimum normal mouth opening is 45mm including the overbite.

2. Auscultation the TMJ during opening and closing three times at least to detect the joint sound, clicking, criptitation, luxation or deviation of TMJ.

3. Determination of masticatory muscles and TMJ pain during excursive movement of mandible. Determination of the tender points of muscles by palpating muscles bilaterally the Temporalis muscle, Masseter muscle, Medial pterygoid muscle, Lateral pterygoid muscle, Posterior digastric muscle and Sternocleidomastoid muscle.

4. Examination of TMJ pain and tenderness was done by digital palpating of the joint performed from both lateral and posterior aspect, the finger tips were placed over the lateral aspect of both joints simultaneously while the posterior aspect was reached via the external auditory meatus by small finger forced anteriorly. The patient was instructed to do movement of opening, closing, laterotrusion to the right and left and protrusion, then asked if he experienced pain in one movement or more.

B- Intraoral examination

The first was done by checking the occlusion of teeth, if there was any premature contact, overlapping of upper anterior teeth, deep over bite, also occlusal midline was checked.

MRI was carried out with MRI 3.0 Tesla, Achieva Philips Medical System Nederland B.V. with standard head coil , the patient in a supine position. Bite block were used during open mouth position. The data were collected on 256 x 256 matrix giving a pixel size of 0.60 x 0.57 mm. Proton Density (PD) pbiqle Sagittal (closed and opened mouth). (TR) =528 milliseconds , (TE) =13 ms , (FOV)=150 mm, flip angle =90° , number of slices =22 slice and slice thickness=2.0 mm.

RESULTS

A significant differences in correlation between Helkimo anamnestic index (Ai) and MRI findings of TMJ disc displacement types and morphology. It was found that when the result of Helkimo anamnestic highest value 84.2 % at Ai0 (No symptoms from the masticatory index), while lowest value 5.3% the at Ai2 (TMJ sounds/tiredness in jaws/stiffness in the morning/stiffness on mandibular movements) . At anterior disc displacement with reduction, the highest value 87.1 % at Ai1 , while the lowest value 12.9% at Ai2. At anterior disc displacement without reduction, the highest value 50.0% at Ai1, Ai2, while the lowest value 0.0% at Ai0 (Table 1).

There was a very high significant differences in correlation between Helkimo dysfunction index and MRI findings of TMJ disc displacement types and morphology. It was found that when the result of Helkimo clinical dysfunction index (Di) and the normal TMJ disc, the highest value 84.2 % at Di0 (Clinically asymptomatic), while lowest value 2.6% at Di2 (Middle dysfunction) and Di3 (Strong dysfunction). At anterior disc displacement with reduction, the highest value 74.2% at Di2 , while the lowest value 9.7% at Di1 (Small dysfunction). At anterior disc displacement without reduction the highest value 72.7% at Di3, while the lowest value 4.5% at Di1 (Figure1).

There was a very high significant differences in correlation between Helkimo clinical dysfunction Index and MRI findings of TMJ disc morphology (P<0.001), with the normal TMJ disc (biconcave), the highest value 72.7% at Di0, while the lowest value 4.5% at Di3. In abnormal (elongated/ folded/posterior thick band) the highest value 50.0% at Di2, while the lowest value 0.0% at Di0 (Figure2).
Table 1: Correlation between Helkimo anamnestic index and MRI findings of TMJ disc displacement types and disc morphology.

<table>
<thead>
<tr>
<th>Helkimo anamnestic index</th>
<th>Ai0</th>
<th>Ai1</th>
<th>Ai2</th>
<th>Total</th>
<th>Mean rank</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of disc displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>32</td>
<td>84.2</td>
<td>4</td>
<td>10.5</td>
<td>2</td>
<td>5.3</td>
</tr>
<tr>
<td>Anterior disc displacement with reduction</td>
<td>0</td>
<td>0.0</td>
<td>27</td>
<td>87.1</td>
<td>4</td>
<td>12.9</td>
</tr>
<tr>
<td>Anterior disc displacement without reduction</td>
<td>0</td>
<td>0.0</td>
<td>11</td>
<td>50.0</td>
<td>11</td>
<td>50.0</td>
</tr>
<tr>
<td>Abnormal disc morphology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal (Biconcave)</td>
<td>32</td>
<td>72.7</td>
<td>9</td>
<td>20.5</td>
<td>3</td>
<td>6.8</td>
</tr>
<tr>
<td>Abnormal (Elongated/folded/posterior thick band)</td>
<td>0</td>
<td>0.0</td>
<td>33</td>
<td>68.8</td>
<td>15</td>
<td>31.3</td>
</tr>
</tbody>
</table>

Figure 1: Correlation between Helkimo clinical dysfunction index and MRI findings of type of disc displacement.

Figure 2: Correlation between Helkimo clinical dysfunction index and MRI findings of disc morphology.
DISCUSSION

In present study the correlation analysis between Helkimo anamnestic index and MRI findings of TMJ disc displacement types and morphology showed positive association expressed by significant difference, these findings were in agreement with that reported by Hasan and Abdelrahman, (9). A very high significant difference in correlation between Helkimo anamnestic index and the normal TMJ disc (P<0.001), these findings were in agreement with that reported by Sano and Westesson, (10); Emshoff et al., (11); Tognini et al., (12). These findings were in disagreement with that reported by Ribeiro et al., (13) because they said ‘Disc displacement is relatively common in asymptomatic individuals’. Moreover, arthroscopy and MRI have shown that TMJs with anteriorly disc displacement have the capacity to form remodelled retrodiscal tissue that resembles cartilage (i.e., pseudo-disc formation) (14). Furthermore, the retrodiscal tissues have adaptive capacity and often respond appropriately to the functional loads placed on the tissues (15). These findings were in disagreement with that reported by Muhtarougullari et al., (16) because they said ‘the clinical diagnosis of no temporomandibular disorder is linked to the high rates of internal derangement detection using MRI’. Maizlin et al., (15) assessed that only findings of internal derangement in the TMJ; and did not evaluate other findings of articular pathology that might have explained symptoms in joints that lacked internal derangement. However, this focused assessment was in keeping with the objective to focus on the correlation between clinical findings and disc displacement. A prospective controlled study will be required for more detailed evaluation of the correlation between MRI findings and clinical symptoms (15). Joint noises are not sufficient evidence of dysfunction when there are no other corroborating symptoms, although they may be found in patients with TMJ disc displacement detected using MRI (17). disc displacements in TMJ are considered to be factors which may lead to disc deformities, osseous changes and clinical symptoms of temporomandibular disorders (18, 19, 20, 21, 22). A statistically significant correlation between an increased signal on T2-weighted images in the posterior disc attachment and the presence of pain (10). A very high significant difference in correlation between Helkimo anamnestic index and MRI findings of TMJ disc morphology (P<0.001), these findings were in agreement with that reported by Emshoff et al. (11), Kobs et al. (23). These findings were in disagreement with that reported by Arayasantiparb et al. (24) because they found no significant relationship between the onset of TMJ symptoms and the disc configuration at either closed or open mouth position as well as the transformation of disc shape from closed to open position. This may be due to the lack of complete data on onset of symptoms for this study. Kobs et al. (25) agreed with Westesson opinion, that if a patient presents with symptoms that can be correlated to the morphologic abnormality diagnosed on imaging studies, the abnormalities are probably responsible for these symptoms.

In present study the correlation analysis between Helkimo clinical dysfunction index and MRI findings of TMJ disc displacement types and morphology showed positive association expressed by significant difference, these findings were in agreement with that reported by Saeed (25), Hasan and Abdelrahman (9), Imanimoghaddam et al. (26). These findings were in disagreement with that reported by Aidar et al. (27) because of they were assessed ‘There is a low correlation between MRI disc displacement detections and the extent of TMJ pain and dysfunction’. Anterior disc displacement is a common finding in TMJ internal derangement. The results show a direct relationship between the degree of anterior disc displacement and MRI findings of other TMJ soft tissues and bone abnormalities as well as the severity of clinical manifestations, so early MRI detection and reporting of anterior disc displacement degree and other MRI findings might help clinicians in full assessment and determining the strategy of management of TMJ dysfunction (9). A very high significant difference in correlation between Helkimo clinical dysfunction index and the normal TMJ disc (P<0.001). The MRI is a modality of choice for diagnosis of TMJ disc displacement as warranted and supplementary method to clinical examination for confirming the presence or absence of TMJ disc displacement (28). A very high significant difference in correlation between Helkimo clinical dysfunction index and MRI findings of TMJ disc morphology, these findings were in agreement with that reported by Sato et al., Saeed (25), Hirata et al. (30), Imanimoghaddam et al. (28). Hirata et al (2007) stated that “We agree with Sato et al. (29), who examined the disc position and its configuration changes. They demonstrated that, in cases of disc displacement, mandible head mobility increased with time, although its configuration did not change; consequently, there
would be a more anterior displacement according to its larger deformity. In our study, the more anterior position of the posterior band was associated with greater alteration of disc configuration, when compared with a more superior position of the mandible head. We suggest that the capacity to reduce is more directly related to alterations in disc shape.

REFERENCES
25. Seed Shahrazaad Sami. Correlation between Clinical Features & MRI Findings in Patients with Internal Derangement of Temporomandibular Joint. unpublished
Relationship with Disk Displacement (Magnetic Resonance Imaging Study). MDJ. 2008; Vol.:5 No.:2.

