Atom-Bond Connectivity and Geometric Arithmetic Indices of Dendrimer Nanostars

N.M. Husin1, R. Hasni1, N.E. Arif2

1 Department of Mathematics Faculty of Science and Technology Universiti Malaysia Terengganu 21030 UMT Terengganu, Malaysia
2 Department of Mathematics, College of Computer Sciences and Mathematics Tikrit University, Tikrit, Iraq

Abstract
Let G be a molecular graph. The atom-bond connectivity (ABC) and geometric-arithmetic (GA) indices of G are defined as
\[ABC(G) = \sum_{uv \in E(G)} \frac{d_u + d_v - 2}{d_u d_v} \]
and
\[GA(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{d_u + d_v} \]
where \(d_u\) (or \(d_v\)) denoted the degree of the vertex \(u\) (or \(v\)), respectively. A dendrimer is a hyperbranched molecule built up from branched units called monomers. In this paper, the ABC and GA indices for two families of dendrimer nanostars are presented.

Keywords: Atom-bond connectivity, Geometric-arithmetic, Dendrimer, Graph

1 Introduction and Preliminaries
A simple graph \(G = (V,E)\) is a finite nonempty set \(V(G)\) of objects called vertices together with a (possibly empty) set \(E(G)\) of unordered pairs of distinct vertices of \(G\) called edges. In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and the edges represent the chemical bonds.

A graphical invariant is a number related to a graph which is structural invariant, that is to say it is fixed under graph automorphisms. In chemistry and for chemical graphs, these invariant numbers are known as the topological indices. There are many publications on the topological indices. One of the most important topological indices is the Randic index [15]. But a great variety of physico-chemical properties rests on factors rather than branching. In order to take this into consideration, Estrada et al. proposed a new index, known as the atom-bond connectivity (ABC) index[9] of graph \(G\), which is abbreviated as \(ABC(G)\). The \(ABC(G)\) is defined as
\[ABC(G) = \sum_{uv \in E(G)} \frac{d_u + d_v - 2}{d_u d_v} \]
where \(d_u\) (or \(d_v\)) the degree the vertex \(u\) (or \(v\)).

The ABC index keeps the spirit of Randic index, and it provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes [9,10]. The properties of ABC index for trees have been studied in [12,17]. More mathematical properties for the ABC index may be found in some papers [4,5,6,7,11].

Vukičević and Furtula [16] proposed a topological index named the geometric-arithmetic (GA) index. The GA index is defined as
\[GA(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{d_u + d_v} \]
where \(d_u\) (or \(d_v\)) the degree of the vertex \(u\) (or \(v\)). For comprehensive survey of this index, the reader is referred to [8] and references therein.

Dendrimers are hyper-branched macromolecules, with a rigorously tailored architecture. They can be synthesized, in a controlled manner, either by a divergent or a convergent procedure. Dendrimers have gained a wide range of applications in supramolecular chemistry, particularly in host guest reactions and self-assembly processes. Their applications in chemistry, biology and nano-science are unlimited. Recently, the topological indices of some dendrimer nanostars have been investigated in [1,2,3,13,14].

In this paper, we continue to investigate the ABC and GA indices of two families of dendrimer nanostars. As by-product, four formulas are obtained for computing the ABC and GA indices of these families of dendrimers.

2 Main Results
We first give some examples of the ABC and GA indices for some simple graphs. Let \(P_n\), \(C_n\), \(K_n\), \(O_n\) and \(S_n\) be the path, cycle, complete, empty and star graphs with \(n\) vertices.

Example 2.1 For \(n \geq 3\)
1. \(ABC(P_n) = \frac{\sqrt{n}}{2} (n - 1)\).
2. \(ABC(C_n) = \frac{n^2}{8}\).
3. \(ABC(K_n) = \frac{\sqrt{n^3}}{2} n\sqrt{n} - 2\).

Example 2.2
1. For every \(n \geq 1\), \(G.d(P_n) = 0\).
2. For every \(n \geq 1\), \(G.d(K_n) = \left(\frac{n}{2}\right)\).
3. For every \(n \geq 1\), \(G.d(S_n) = \frac{2n-1^{3/2}}{n}\).

Now we consider the molecular graph \(G(n) = D_1[n]\), where \(n\) is the steps of growth in this kind of dendrimer of generation 1-3. Figure 1 shows first kind of dendrimer of generation 1-3 with 4 growth stages, \(D_1[4]\). Note that \(D_1[n]\) can be divided to \(2^n\) hexagonal in each step (stage). Define \(d_{ij}\) to be the number of edges connecting a vertex of degree \(i\) with a vertex of degree \(j\). Let denote a vertex of degree \(i\) with \(i\)-vertex, and an edge connecting a \(j\)-vertex with a \(k\)-vertex by \((j,k)\)-edge. By simple calculation, we have \(|V(D_1[1])| = 2^{n+4} - 9\) and \(|E(D_1[1])| = 18 \times 2^{n} - 11(1)|\).
Figure 1: The first kind of dendrimer of generation 1-3 with 4 growth stages, $D_1[4]$

Theorem 2.1 Let $n \in N$. Then, the atom bond connectivity (ABC) of the graph $D_1[n]$ is given as

$$ABC(D_1[n]) = \left(\frac{1}{\sqrt{3}} + 9 \times 2^n - 6\right) \sqrt{2}$$

Proof. For the graph $D_1[n]$ which contributes $(1,3)$, $(2,2)$ and $(2,3)$-edges, the formula of ABC index can be deduced to

$$ABC(D_1[n]) = \frac{\sqrt{2}}{\sqrt{3}} d_{13} + \frac{\sqrt{2}}{2} d_{22} + \frac{\sqrt{2}}{2} d_{23}$$

There is only one $(1,3)$-edge in the kernel of $D_1[n]$ ($n = 0$) (see Figure 2), so $d_{13} = 1$ for all steps of growth. By induction argument, we obtain $d_{22} = 2^{n+2} + 2(2^n - 1) = 6 \times 2^n - 2$. Note that $d_{23} = |E(D_1[n])| - (d_{13} + d_{22})$ and $|E(D_1[n])| = 18 \times 2^n - 11$. So, we have $d_{23} = 12 \times 2^n - 10$. Table 1 shows the values of d_{ij} where $(i,j) = (1,3), (2,2),(2,3)$ and $n = 1,2,3,4$.

Hence,

$$ABC(D_1[n]) = \frac{\sqrt{2}}{\sqrt{3}} (1) + \frac{\sqrt{2}}{2} (6 \times 2^n - 2) + \frac{\sqrt{2}}{2} (12 \times 2^n - 10) = \left(\frac{1}{\sqrt{3}} + 9 \times 2^n - 6\right) \sqrt{2}$$

Now the proof is complete. □

Table 1: The values of d_{ij} in $D_1[n]$ where $(i,j) = (1,3), (2,2),(2,3)$

<table>
<thead>
<tr>
<th>Stages</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{13}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d_{22}</td>
<td>10</td>
<td>22</td>
<td>46</td>
<td>94</td>
</tr>
<tr>
<td>d_{23}</td>
<td>14</td>
<td>38</td>
<td>86</td>
<td>182</td>
</tr>
</tbody>
</table>

Now we consider another molecular graph $G(n) = D3[n]$, where n is the steps of growth in this kind of dendrimer of generation 1-3. Figure 3 shows the first kind of dendrimer of generation 1-3 with 3 growth stages, $D_1[3]$.

Figure 2: The kernel of $D_1[n]$

Theorem 2.2 Let $n \in N$. Then, the geometric-arithmetic (GA) of the graph $D_1[n]$ is given as

$$GA(D_1[n]) = \left(\frac{24}{5} \sqrt{6} + 6\right) 2^n + \frac{\sqrt{3}}{2} - 4\sqrt{6} - 2.$$

Proof. For the graph $D_1[n]$ which contributes $(1,3)$, $(2,2)$ and $(2,3)$-edges, the formula of GA index can be deduced to

$$GA(D_1[n]) = \frac{\sqrt{2}}{2} d_{13} + d_{22} + \frac{2}{5} d_{23}.$$

By Theorem 2.1, we know that $d_{13} = 1$, $d_{22} = 6 \times 2^n - 2$ and $d_{23} = 12 \times 2^n - 10$. Hence, we have

$$GA(D_1[n]) = \frac{\sqrt{2}}{2} (1) + (6 \times 2^n - 2) + \frac{2}{5} \sqrt{6} (12 \times 2^n - 10) = \left(\frac{24}{5} \sqrt{6} + 6\right) 2^n + \frac{\sqrt{3}}{2} - 4\sqrt{6} - 2.$$

This completes the proof. □
Theorem 2.3 Let \(n \in \mathbb{N} \). Then, the atom bond connectivity (ABC) of the graph \(D_3[3] \) is given as
\[
ABC(D_3[3]) = (18\sqrt{2} + \sqrt{6} + 6)2^n - 9\sqrt{2} - 4
\]

Proof. For the graph \(D_3[3] \) which contributes (1,3), (2,2), (2,3) and (3,3)-edges, the formula of ABC index can be deduced to
\[
ABC(D_3[3]) = \frac{\sqrt{3}}{2}d_{13} + \frac{\sqrt{2}}{2}d_{22} + \frac{\sqrt{2}}{2}d_{23} + \frac{2}{3}d_{33}
\]
By induction argument, we can show that \(d_{13} = 3 \times 2^n \), \(d_{22} = 12 \times 2^n - 6 \), \(d_{23} = 24 \times 2^n - 12 \) and \(d_{33} = 9 \times 2^n - 6 \). Table 2 shows the values of \(d_{ij} \) where \((i,j) = (1,3), (2,2), (2,3) \) and \(n = 1,2,3 \) therefore, by Theorem 2.3, we know that \(d_{13} = 3 \times 2^n \), \(d_{22} = 12 \times 2^n - 6 \), \(d_{23} = 24 \times 2^n - 12 \) and \(d_{33} = 9 \times 2^n - 6 \). Hence, we have
\[
GA(D_3[3]) = \frac{\sqrt{2}}{2}d_{13} + \frac{2}{5}d_{22} + \frac{2}{3}d_{23} + \frac{2}{5}d_{33}
\]
This completes the proof. \(\square \)

Remarks
This paper deals with the computation of the atom bond connectivity (ABC) and geometric arithmetic (GA) indices for some nanostar dendrimers. The problem on ABC and GA indices of nanostructures and general graphs is remains open for further investigation.

Acknowledgement
This research is supported by the Fundamental Research Grant Scheme (FRGS), Ministry of Higher Education, Malaysia with Ref. No.: FRGS/1/2013/ST06/UMT/02/3.

References