Patterns of Antibiotic Resistance in Staphylococcus aureus Isolates and Detection the Heteroresistance to Vancomycin by Population analysis Method

Hajer A. Alani* Dhia S. Hassawi* May T. Flayih**
* University of Anbar - College of science
** University of Baghdad - College of science

Abstract

Staphylococcus aureus is a major cause of bacterial poisoning and spread widely in Iraq. In this study vancomycin resistant S. aureus (VRSA) were isolated from wounds, skin, and nose of human. The isolates were identified by using biochemical tests. Sixty one (72.6%) isolates were identified as S. aureus, followed by CoNS 23 (27.3%) from 250 sample collected. Antibiotic susceptibility was determined by disk diffusion, the results of the susceptibility test indicated that 59 S. aureus isolates have different levels of resistance to antibiotics. In this study tow methods were used to identify resistant and intermediate resistance to vancomycin: which were Kirby-Bauer disk diffusion and automated system Vitek2 method. Results of Disk diffusion method indicated that (19.6%) isolates were resistant to vancomycin. The results of Vitek2 resistant test for 20 isolates indicated that (945%) isolates were resistant to vancomycin, with MIC value of (32 μg / ml); (315%) isolates showed intermediate resistant to vancomycin, with MIC value of (4 μg / ml), (8 40%) isolates showed sensitive to vancomycin with MIC value of (≤0.5-2 μg / ml). Population analysis profile (PAP) method was used to detect Heteroresistant Vancomycin-Intermediate Staphylococcus aureus for the 10 isolates. The results showed that 9 (90%) isolates of S. aureus were resistant to vancomycin, while (10%) isolate was sensitive.

Keywords: S. aureus, MRSA, VRSA, VISA, Population analysis profile.

Introduction

Staphylococcus aureus is one of the commonest causes of healthcare-associated bacteremia [1] and a major human pathogen that causes a wide range of clinical infections. It is a leading cause of bacteremia and infective endocarditis as well as osteoarticular, skin and soft tissue, pleuropulmonary, bone infections, nosocomial infections, surgical wound infections and device-related infections [2].

Several virulence factors are implicated in the pathogenesis of S. aureus strains have been described. These include surface components (capsule, peptidoglycans, teichoic acid, protein A, cell attachment protein), enzymes (coagulase, lipases, esterases, proteases, hyaluronidase, deoxyribonuclease, catalase, beta-lactamase, and staphylokinase), and several toxins [3].

Using of vancomycin has increased dramatically worldwide as a result of empirical and directed therapy against burgeoning MRSA infections. VRSA strains have been isolated from USA, France, Korea, South Africa, Brazil, Japan, and Scotland. Extensive use of vancomycin creates a selective pressure that favors the outgrowth of rare, vancomycin-resistant clones leading to heterogeneous vancomycin intermediate S. aureus clones, and eventually, with continued exposure to a uniform population of VISA clones [4,5].

Due to the importance of S. aureus both as humans and animals pathogen this study was carried out with the several objectives. To detect and characterize Staphylococcus isolates from human sources using different biochemical tests. Based on the results, possible VISA and VRSA strains will be identified as homogeneously or heterogeneously vancomycin resistant by performing population analysis. The results will be confirmed by using antibiotic susceptibility test (Vitek2).

Materials and Methods:

Samples collection:

During the period from February to May 2016, 250 samples (120 nasal and 130 skin samples) were collected from Al-Nu'man General Hospital, Al-Yarmouk Teaching Hospital, and Abu Ghraib General Hospital in Baghdad and Baghdad medical city teaching hospital and then transported directly to the laboratory at Al-Anbar University. The samples were cultured on blood agar; and mannitol salt agar that is used for selective
isolation (contain 7.5 % NaCl), and for culturing and differentiating of medically important Staphylococci species.

Isolation and Identification of Staphylococci:

The isolation of staphylococci from clinical samples were carried by specific way depending on routine laboratory techniques, all samples were streaked on mannitol salt agar and all plates were incubated aerobically for 24 hrs. at 37°C. S.aureus isolates were identified depending on the morphological features on culture media and biochemical tests according to Bergey’s Manual [6].

Susceptibility to Antibiotics and Determination of Minimal Inhibitory Concentration (MIC):

Antibiotic susceptibility was determined by disk diffusion on Mueller-Hinton agar based on Clinical and Laboratory Standards Institute guidelines [7]. Susceptibility test was determined for S. aureus isolates against 14 different antibiotics used: Vancomycin, Amoxicillin, Amoxicillin(Clavulanic acid), Azithromycin, Cefoxitin, Clindamycin, Erythromycin, Gentamycin, Levofloxacin, Methicillin, Penicillin, Rifampin, Sparfloxacin, and Tetracycline.

The minimal concentration of vancomycin that inhibit the growth of S.aureus was determined by vitek 2 compact system.

Population Analysis:

Population analysis of Glycopeptides Intermediate S. aureus (GISA) and hetero Glycopeptides Intermediate S. aureus (hGISA) isolates was performed according to the method of Hiramatsu [8]. Isolates were suspended in brain-heart infusion broth to a 2 McFarland standard (6×10^8 CFU/mL). Inoculums of 3×10^1 CFU were placed on brain-heart infusion agar plates containing serial dilution of vancomycin (1-10mg/L). Plates were incubated at 37°C for 48h and colonies were counted.

Results and Discussion

S. aureus produced yellow colonies with yellow zone on mannitol salt agar as a result of utilizing mannitol (positive result for mannitol fermentation). The other species of Staphylococci produced small pink or large deep yellow to deep orange colonies with no color change of the medium [9].

The isolated colonies were purified by ABC streaking method on mannitol salt agar; the isolates were then examined microscopically for gram stain, shape, and cluster arrangement. Eighty-four isolates were identified morphologically as gram positive cocci, arranged in grape-like irregular clusters. The clusters occurred because the bacterial cells divided to three planes in an irregular pattern producing branches that considered as characteristics of *Staphylococcus spp.* [9,10].

For further identification, the catalase test was performed for the 84 isolates that gave positive results with catalase test, and this differentiates *Staphylococcus* from the genus *Streptococcus* which gave negative results. The oxidase test was also applied for the 84 isolates; negative results were observed with all 84 isolates that differentiate *Staphylococcus* from the genus *Micrococcus* which usually produces purple color as positive result [9,11,12].

After identification of the isolates at generic level, the coagulase test was performed to identify the bacterial isolates, sixty one isolates (72.6%) reveled the ability to produce coagulase enzyme (coagulase positive), and twenty three isolates (27.4%) were coagulase negative.

For further identification, Baird-Parker medium was used. In this study all 61 *S. aureus* isolates grown in this medium (Figure 1). This medium is a modification of a previous formula developed by Zebovitz [13].

Figure 1. Staphylococcus aureus isolates on Baird-Parker medium

The results indicated that out of 84 isolates, 61 (72.6 %) were identified as S.aureus and 23 (27.3 %) were identified as Coagulase Negative *Staphylococcus* (CoNS). Vitek2 was employed for the result confirmation, the card for detection of gram positive bacteria. Regarding the source of samples and the isolated *Staphylococcus spp.*, the results appeared as follows: out of 120 nasal swabs, 30 was CoPS and 13 was CoNS; for the 130 burn swabs, 31 was CoPS, and 10 was CoNS as shown in table (1). The results agreed with [14,15,16] who indicated that nasal cavity is considered the major reservoir for staphylococci.
Table 1. Isolated staphylococcal spp. from clinical sample

<table>
<thead>
<tr>
<th>Sample Source</th>
<th>Sample No.</th>
<th>CoPs</th>
<th>CoNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal swabs</td>
<td>120</td>
<td>30(25%)</td>
<td>13(10.8%)</td>
</tr>
<tr>
<td>Burn swabs</td>
<td>130</td>
<td>31(23.8%)</td>
<td>10(7.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>250 (100%)</td>
<td>61 (24.4%)</td>
<td>23 (9.2%)</td>
</tr>
</tbody>
</table>

Antibiotic susceptibility

Staphylococcus aureus susceptibility test was done for the 61 isolates of S.aureus using disk diffusion method; the test was applied for 14 different antibiotics. Results of the susceptibility test indicated that 59 S. aureus isolates have different levels of resistance to antibiotics: Methicillin (89.8%), Penicillin (87.8%), Cefoxitin (77.1%), Amoxicillin (51.6%), Amoxicillin Clavulanic acid (52.5%), Vancomycin (27.1), Erythromycin (95.6%), Clindamycin (96%), Azithromycin (74.1%), Gentamycin (58.3%), Rifampin (58%), Tetracycline (8.2%), Levofloxacin (3.5%), and Sparfloxacin (0%). figures (2).

Figure 2.
a- Methicillin and Vancomycin susceptibility test by disk diffusion method
b- Antibiotic susceptibility of Staphylococcus aureus isolates

In this study, the prevalence of Methicillin Resistance S.aureus MRSA was (89.8%), which varied from findings of other studies in other countries. In three separate studies in Iran, 56%, 72%, and 58% of staphylococci isolates were identified as methicillin resistant [17,18,19]. Al-Hasani (2011) showed that Methicillin resistant to S. aureus was (83.7%). Whereas [20] indicated that penicillin resistant was (89.2%) for S. aureus isolated from pus and wound swabs.

The difference in rates of isolation of MRSA in different studies might be due to the difference in locations and time periods of the studies, and difference in hygienic conditions maintained in different hospitals [21], healthcare facilities provided by the hospital, implementation of infection control program, and rational use of antibiotics, which may vary from hospital to hospital [22].

It is quite possible that the Amoxicillin-Clavulanic acid complex (52.5%), which is a larger molecule than Amoxicillin (51.6%), may experience greater difficulty in permeability and overall transport across the microbial cell wall membrane barrier.

In this study, 77.1% of S. aureus isolates exhibited Cefoxitin resistance by disc diffusion method; previous studies mentioned 69.1% and 68% resistance [23,24] respectively. Gentamicin resistance was (58.3%) among isolates; [25] found that Gentamycin resistance was (52.5%) . The tetracycline resistance was (8.82%) among S. aureus isolates. [25] found that Tetracycline resistance was (70%), while [26] showed that Tetracycline resistance was (55%). [27] showed tetracycline resistance rates by years (10.1%) among S. aureus isolates.

The result of S. aureus resistance to Rifampin was (58%) in this study. [28] indicated (94.3%) resistance to Rifampin was, while (17.3%) of isolates showed resistance to Rifampin [29]. The causes of Rifampin-resistant mutations within bacteria might be due to alterations in the gene, which encodes the β-subunit of the RNA polymerase enzyme [30].

The results of resistance S. aureus isolates were (0%, 3.5%) for Sparfloxacin and Levofloxacin, respectively; with 82.1% for Sparfloxacin and Levofloxacin susceptibility.
[20] showed that Sparfloxacin susceptibility was (75.6%) and Levofloxacin susceptibility was (69.6%).

The results showed 95.6%, 96%, and 74.1% resistant to Erythromycin, Clindamycin, and Azithromycin, respectively. [31] mentioned that Clindamycin resistance was found in 10% of S. aureus isolates, while [27] found 13.5% resistance among S. aureus isolates. [32] revealed that the percentage of Erythromycin resistance among S. aureus isolates was (28.42%). While [33] showed that Erythromycin resistance among S. aureus isolates was (85.7%) and was (78%) for Azithromycin.

Vancomycin sensitivity test results indicated the existing of 61 isolates of S. aureus: 12 isolates (19.6%) were resistant to Vancomycin, 8 isolates (13.1%) were intermediate resistance, and 41 isolates (45.9%) were sensitive. [34] findings stated that vancomycin resistant S. aureus were 30% among isolates. [35] and [36] showed that VRSA were 20% and 41.2% among S. aureus, respectively. Also, rate of resistant to vancomycin among S. aureus isolates was (2.27%) according to [37], (8%) according to [38], and 2.8% according to [39].

In this study, MRSA represented 89.8%, this result demonstrated high prevalence, and increased distribution of Methicillin resistant Staphylococci isolates in the community among carrier persons and patients; This is in agreement with other studies [40,41]. The prevalence of VRSA among MRSA was 93.75%, while prevalence of VISA and VSSA was 90% and 87.87%, respectively.

Determination of Minimal Inhibitory Concentration (MIC)

The MIC of Vancomycin for S. aureus isolates was determined by Vitek2. The results showed that VRSA isolates had MIC (≥32 μg/ml) and VISA isolates had MIC (4 μg/ml), while VSSA isolates had MIC value ranged from (≤0.5-2 μg/ml).

The results of antibiotics susceptibility by Vitek2 indicated that 20 isolates (100%) were MLSB+SA resistant, 16 isolates (80%) were Beta lactamase resistant, 7 isolates (35%) were Glycopeptides resistant, and 5 isolates (25%) were Oxazolidinone resistant, as shown in table (2).

<table>
<thead>
<tr>
<th>Table 2. Patterns of Antibiotic Resistance in Staphylococcus aureus Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic Resistance Patterns</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>S.aureus isolates No. (%)</td>
</tr>
</tbody>
</table>

The multidrug resistance (MDR) bacteria defined as resistance to 3 or more types of antibiotics [42]. Multidrug resistant bacteria including S. aureus can be isolated from different infection [43]. In the present study, VRSA showed resistance to a wide range of antimicrobial agents. All VRSE and VISE isolates showed multidrug resistance; even VSSS exhibited multidrug resistance.

Disk diffusion test appears not accurate for determining vancomycin susceptibility; broth dilution or the E-test method should be used instated [44]. E-test demonstrated to read slightly higher than broth microdilution (BMD) Method, it may be the best alternative for evaluating MRSA vancomycin MICs in patients with serious and life-threatening infections [45]. [46] showed that E-test gave an MIC value greater than that of Vitek2 in 64(85.3%) isolates.

In this study, comparison was made between the two methods used for measuring the sensitivity of the isolates to vancomycin. Differences emerged especially between disk diffusion and Vitek2; 12 isolates were VRSA by disk diffusion, and 9 isolates were VRSA by VITEK 2 as shown in table (3). VISA and VRSA isolates were not detected precisely by the disk diffusion method; the acceptable methods used to detect these isolates were non-automated and include broth or agar dilution and the E-test method [47].

Population analysis

Results of vancomycin susceptibility obtained by Vitek2 showed that 3 isolates were VISA, 9 isolates VRSA, and 8 isolates VSSA. The population analysis profile showed that 9 isolates were resistant to vancomycin and one isolates was sensitive to vancomycin as presented in figure (3).

<table>
<thead>
<tr>
<th>Table 3. Comparison among vancomycin resistant phenotypes of 20 isolates S. aureus by two methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Disk diffusion</td>
</tr>
<tr>
<td>Vitek2</td>
</tr>
</tbody>
</table>
The emergence of vancomycin-intermediate S. aureus (VISA) and heterogeneous vancomycin-intermediate S. aureus (hVISA) over the past decade has provided a challenge to diagnostic microbiologists to detect these strains, clinicians treating patients with infections due to these strains, and researchers attempting to understand the resistance mechanisms. By using population analysis profile (PAP) as a reference method, the hVISA phenotype can be detected for strains of S. aureus with vancomycin MICs as low as 0.5 to 1 μg per ml [48]. In a clinical study, the hVISA phenotype was detected in 50% of clinical MRSA isolates with vancomycin broth MIC of 2 μg per ml [49]. In this study, the 9 VRSA isolates were highly resistant and homogeneously.

References

أنماط مقاومة المضادات الحياتية في عزلات المكورات العنقودية الذهبية Staphylococcus aureus والتحري عن تغير مقاومة الفانكومايسين باستخدام طريقة population analysis

هاجر عمر عبد النظيف ضياء سعد الله حساوي
E.mail: dean_coll.science@uoanbar.edu.iq

الخلاصة

بكتيريا المكورات العنقودية الذهبية هي السبب الرئيسي للتسمم البكتيري وقد انتشرت على نطاق واسع في العراق. تم عزل هذه البكتيريا بباكتريا Graf colleagues من الجروح والجلد والأنف من الأشخاص. ونحلت باستخدام الاختبارات الكيموحيوية. تم عزل 61 (72.6%) عزلة من المكورات العنقودية الذهبية S.aureus, و 23 (27.3%) عزلة من النوع المكورات العنقودية السالبة لانزيم CoNS. حددت التحاليف القياسية باستخدام طريقة الانتشار على الاطباق (disk diffusion) التحليل (CoNS) ابتكرت آن 59 عزلة من ابتكار متوازنة متوازنة البكتيريا الحيوية. في هذه الدراسة، تم استخدام طريقة لتحديد العزلات المقاومة والمتوسطة المقاومة للفانكومايسين وهي طريقة الاختبار على الأطباق (disk diffusion) النظام الآلي. أشارت النتائج إلى الأطباق أنه (19.6%) عزلة كانت مقاومة للفانكومايسين. أظهرت نتائج طريقة الانتشار على الأطباق (Vitek2) استخدام طريقة الاختبار للفانكومايسين (MIC) للفانكومايسين حيث كانت قيمة S.aureus (32) عن عزلة اللفانكومايسين. أظهرت النتائج أن (90%) عزلة S.aureus مقاومة للفانكومايسين بحسب المنحنى الخاص بالتجربة (10%) عزلة من S.aureus.