Revitalization of a necrotic immature permanent anterior tooth (Case Report)

Rabab Kubba, B.D.S. (1)
Zainab Al-Dahan, B.D.S., M.Sc. (2)

ABSTRACT
Background: Management of immature permanent teeth with necrotic pulp is considered challenging to the clinician. Regeneration of pulp tissue is a relatively new approach for management of these teeth that allow continuation of root maturation rather than formation of just a calcific barrier as in apexification.

Method: 9 years-old girl with traumatized upper left central incisor. The clinical and radiographical examinations revealed uncomplicated crown fracture, tenderness to percussion, absence of response to cold vitality test. Diagnostic X-ray revealed open apex with periapical radiolucency. Revascularization was suggested to treat the tooth, starting with irrigation of canal with 5% NaOCl + 3% H₂O₂, followed by 2 weeks of triple antibiotic (metronidazole, ciprofloxacin and minocycline) paste application. Then antibiotic paste was removed, bleeding was induced and calcium enriched mixture (CEM) cement was applied over the blood clot and the access cavity was filled with Glass Ionomer filling material. The patient was evaluated clinically and radiographically after 1 and 7 months.

Results: In clinical and radiographical examinations in follow-up visits, the tooth was asymptomatic and functional and periapical radiolucency was healed. Apical closure and positive response to cold test were noticed in the 7th month follow-up visit.

Conclusion: Revascularization is an effective treatment for immature necrotic teeth. In addition, CEM cement provides favorable outcomes in revascularization treatment. (J Bagh Coll Dentistry 2018; 30(2): 82-85)

INTRODUCTION:
Management of immature permanent teeth with necrotic pulp is considered challenging to the clinician [1]. These teeth have thin root walls and open apices making their endodontic treatment very difficult [2, 3]. These cases are common among children with dental traumatic injuries, dental anatomical anomalies (eg, dens evaginatus), and untreated carious lesions [1]. Historically, apexification without paste was used successfully for immature necrotic teeth [4, 5]. Apexification with calcium hydroxide was considered the treatment of choice for immature necrotic teeth [6], which stimulates hard tissue barrier formation [7, 8]. Later on, single visit apexification by apical plug using materials like mineral trioxide aggregate (MTA) was suggested which reduced time of treatment and number of visits [9, 10]. Apexification with biodentin also found to be effective [11]. The main disadvantage of apexification techniques is not permitting continuation of root maturation ending with fragile root structure [12].

An alternative approach for management of immature necrotic permanent teeth is the regeneration of pulp tissue to allow continuation of root maturation rather than formation of just a calcific barrier as in apexification [13-15].

The advantages of endodontic regeneration are the continuation of root lengthening and reinforcement of root walls through the deposition of new hard tissue [16].

Several protocols were suggested for regenerative endodontics, most of them are based on the same principles: chemical disinfection of the root canal, providing a suitable environment for a scaffold to encourage tissue ingrowth, and sealing the access cavity tightly to avoid the entry of bacteria [17].

CEM cement is a novel bioceramic material with a sealing property similar to MTA [18]. The three properties: slight expansion, thin film thickness and reasonable flow of CEM give the material effective sealing and lower the subsequent leakage [19].

CASE REPORT:
9 years old girl was referred to the department of pediatric and preventive dentistry in the specialized dental health center at Al-Sader City. The patient has an uncomplicated crown fracture that occurred due to traumatic injury several months ago. On examination, the tooth tender to percussion associated with mobility within normal limits, absence of sinus tract, and absence of response to cold vitality test were found.

Diagnostic periapical radiograph (Figure 1) revealed that upper left central incisor has open apex with a radiolucent periapical lesion. The diagnosis of necrotic pulp with symptomatic
apical periodontitis was made. Treatment options were discussed with parents and informed consent was obtained. Local anesthesia 2% Lidocaine with 1:80,000 epinephrine was given, rubber dam was applied, then access opening was done and working length was determined by inserting a large K-file 2mm shorter than the apex confirmed by periapical radiograph (Figure 2). Then minimal instrumentation was done and the canal was irrigated with 5% NaOCl + 3% H$_2$O$_2$ using closed end endodontic needle [20], keeping its tip 2mm shorter than the apex [20-23]. The canal was dried with large sterile paper point. Then the pulp chamber walls were sealed with a dentine bonding agent to minimize discoloration caused by minocycline [24]. A freshly prepared triple antibiotic paste (400 mg metronidazole (Julphar - U.A.E.), 250 mg ciprofloxacin (Acino-Switzerland) and 50 mg Minocyclin (Alfares pharmaceuticals-Syria) mixed with distilled water was applied into the canal with lentulo spiral, keeping the paste 1 mm shorter than apex [17]. Cavity was sealed with glass ionomer filling material and the patient was given an appointment 2 weeks later.

On the second visit, if the tooth was found without signs and symptoms, 3% Mepivacaine anesthetic solution without vasoconstrictor was injected [25, 26], rubber dam was applied and temporary filling was removed. Antibiotic paste was washed by copious amount of 5% NaOCl + 3% H$_2$O$_2$ [20]. Then the canal was dried and intracanal bleeding was induced using a sterile #50 K-file which was inserted 2 mm beyond the apical end of the canal [16]. Bleeding was controlled with a cotton pellet 3 mm apical to the canal orifice. 15 minutes later, the clot was stable on gentle touch with a cotton pellet [25]. CEM cement was applied over the blood clot and the access cavity was filled with Glass Ionomer filling material to give double seal (Figure 3). The patient was recalled for clinical and radiographical evaluation after 1 and 7 months. No signs or symptoms in all follow-up visits were found, no discoloration was evident. Lesion healing was evident radiographically after 1 month (Figure 4). Apical closure and positive response to cold test were noticed in the 7 months follow-up visit (Figure 5).

DISCUSSION:

Endodontic regeneration in immature roots is based on the fact that vital stem cells in the apical papilla can survive even in cases of pulpal necrosis with periapical infection [21]. These stem cells have high proliferative and odontogenic differentiation capacity [27, 28]. Also the close relation of apical papilla to the root apex renders this rich source feasible for endodontic regenerative therapies [29].

Other considerable sources for stem cells in regenerative procedures are stem cells of the periodontal ligament and bone marrow because of the mechanical effect on the apical tissue (induction of bleeding) which could cause the emission of these cells, even their relative proportion is thought to be significantly less than stem cells of the apical papilla [30]. Disinfection of the root canal system is the key factor in successful revascularization protocols.
When compared with traditional endodontic treatment, higher levels of canal disinfection are needed in regenerative procedures. Bacterial penetration into dentinal tubules has been documented. Deeper bacterial penetration in younger patients also documented. Therefore, canal disinfection in immature infected teeth is an actual challenge.

Several studies on vital pulp therapies found that CEM is a biocompatible material, and its biocompatibility, sealing ability and cementogenetic properties are identical to those of MTA. CEM does not cause discoloration when used in orifice level. This is an advantage over MTA which causes crown discoloration as mentioned in some revascularization reports. CEM was used successfully in revascularization of permanent immature molars, and this study was done to evaluate its effectiveness in revascularization of necrotic immature permanent anterior teeth.

In spite of absence of histological evaluation of tissues formed inside the canal in this study, continued root maturation and positive response to cold vitality test are signs of an organized vital pulp tissue formation. Root thickening observed may be attributed to deposition of cementum-like tissue along the walls.

CONCLUSION

Revascularization is an effective treatment for immature necrotic teeth. In addition, CEM provides favorable outcomes in revascularization treatment.

REFERENCES:

