detection the pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module

Dr. Ashoa'q Basem Jasem, Dr. Amna Nama, Dr. Ahsan Mhdi Alsqr

detection the pathogenicity of

Salmonella **spp isolated from drinking water in some region of Baghdad city in animal module.**

Dr. Ashoa'q Basem Jasem
Dr. Amna Nama
Dr. Ahsan Mhdi Alsqr

Abstract:

One thousand five hundred sixty seven water samples from different parts of Baghdad city were collected from the beginning of April 2010 till the end of December 2011, all samples were bacteriologically examined by traditional methods for detection of Total coliform and other pathogenic bacteria. Five isolate of *Salmonella* spp. were isolated and tested for its pathogenicity and ability to toxin production in the mouse module, all environmental isolates induced fluid accumulation (FA ratio ≥100) after 5 hours and cause histopathological effects after 24h of inoculation. Histopathological changes showed inflammation of the mucosa and submucosa in the small intestine with mild chronic inflammatory cells and shortnange of villi, mild degenerative of renal tissue and slightly necrosis, massive necrosis of hepatic cells with infiltrate of mild inflammatory cells in the liver section.

Introduction

Water borne diseases are caused by pathogenic microorganisms viruses, bacteria, intestinal parasites and other harmful microorganisms, which are directly transmitted when contaminated fresh water is consumed. Most of entereitis cases caused by drinking contaminated water with pathogenic bacteria such as *Salmonella* spp., determination of its virulence factors very important especially its ability to produce toxins. Nearly 2.2 million people die every year due to hygiene-related diseases, like gastroenteritis, typhoid fever and dysentery (Esha et al., 2009). Water sources are often contaminated with sewage and become the main causes of diseases such as typhoid and cholera, fecal contamination due to human and animal feces lead to the spread of *Salmonella* spp. in the surrounding environment and remain viable for months in soil, water and feces, which may be transferred to the community through drinking
detection the pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module..................

Dr. Ahsaq Basem Jasem, Dr. Amna Nama , Dr. Ahsan Mhd Alsqr

water (Lehloesa and Muyima, 2000). Several methods have been used for isolation and detecting pathogenic bacteria and *Salmonella* spp. from water samples, such as traditional and molecular methods. The Maine objective of this study was the isolation of Salmonella from tap water by traditional methods and detection their pathogenicity in the animal organs

Material and Methods:-

1- **Water samples collection:-** One thousand five hundred sixty seven drinking water samples were collected randomly from houses in different parts in Baghdad area, from the beginning of April 2010 till the end of December 2011.

2- **Animals:-** Eighteen Sealed-adult-mouse model Swiss albino mice weighing about 15–20 g were used in this study to detected the pathogenicity of *Salmonella* spp., which accommodate from pharmaceutical care animals laboratory

Bacteriological Examination:- were carried out according to Eaton *et al.*, (2005).

Traditional methods:-

1- Isolation of of Total coli form(TC), fecal coli form (FC), and *Escherichia coli* (E.coli) through using the membrane filter technique (MF), tube fermentation test (TFT) and presence /absence/ (P/A) method according to Delabre *et al.*, (1998).

2- Isolation and Identification of *Salmonella* spp.:-

1- The one liter of Tap water was filtered through a membrane filter with a pore size of 0.45 μm by vacuum pumping system.

2- Place the membrane in flask with pre enrichment media (100ml) sterile peptone water, then incubated at 37 C° for 24h .

3- Loop full of positive growth peptone water was transferred for 100ml tetrathionate (x2) broth incubated at 37 C° for 24 h , streaked on selective media XLD or SS Agar then incubated for 24h at 37C°.

4- Suspected colonies were selected and further biochemical tests with API 20E and Mini Api were carried out.

5- The isolates which confirmed as *Salmonella* by biochemical tests, sent to reference for laboratory Central public health laboratory (CPHL) for serological conformation.

Detection of virulence factors in *Salmonella*:-- which was performed by

1- **Animal model:-** The enteropathogenicity of *Salmonella* spp. was examined as described by Prasanta *et al.*, (2008) using the sealed-adult-mouse model Swiss albino mice weighing about 15–20 g. The animals, were kept in sterilized cages with autoclaved bedding, were
detection the pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module.................

Dr. Ashoo'aq Basem Jasem, Dr. Amna Nama, Dr. Ahsan Mhdi Alsqr

acclimated to laboratory conditions (12 h dark: 12 h light cycles; 24±1 °C). The procedure was carried out as following:-

1- The isolated strains were grown in brain heart infusion broth at 37°C with shaking for 24h, harvested by centrifugation.

2- Eighteen mice were divided into three equal groups, the first group regarded as control, the second and third were considered as treated groups which were killed, depending on the time 5h, 24 h for detection the effects of the toxins on organs.

3- After 15 min, the bacterial inoculate (1 × 10^10 CFU/ml) in 200 μl of Phosphate buffer saline were given to the test animal.

4- At 5 h from post-inoculation, the animals of second were sacrificed, and the fluid accumulation (FA) ratios were determined, FA ratios of ≥100 were considered positive.

5- For the colonization assay, infections were allowed to proceed for 24 h. The mice of third group were sacrificed, and the intestines, stomach, kidney, and liver were removed and kept for histopathological examination.

Histopathological examination:- Histopathology was performed as described by Chang and Miller (2006). After 24 h post-inoculation, mice were euthanized and sections of small intestine, stomach, kidney and liver were immediately fixed in 10% neutral buffer formalin. Following fixation, tissue samples were embedded in paraffin, sectioned at 5 μm and stained with haematoxylin-eosin for light microscopic examination.

Result and Dissection:

1- Analysis of Drinking Water Samples:- Large variety of bacterial pathogens including *Enterobacter sp.*, *Proteus mirabilis*, *E.coli*, *Aeromonas hydrophila*, *Pseudomonas sp.* and *V. cholera*, in addition to the Total coliform and Fecal coli form were isolated from drinking water samples as shown in Table (1).
The pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module

Dr. Ashoo'aq Basem Jasem, Dr. AmnaNama, Dr. Ahsan Mhd Alsqr

Table (1): Bacterial population isolated from drinking water samples in some parts of Baghdad area.

<table>
<thead>
<tr>
<th>Months 2010</th>
<th>No. of samples</th>
<th>% of polluted samples</th>
<th>No. of samples polluted with total coliform</th>
<th>E.coli</th>
<th>Salmonella spp.</th>
<th>V.cholera</th>
<th>Pseudomonas spp.</th>
<th>Proteus mirabilis</th>
<th>Aeromonas hydrophila</th>
<th>Enterobacter cloacae</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>34</td>
<td>88.2</td>
<td>30</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>56.6</td>
<td>85</td>
<td>62</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>50</td>
<td>60</td>
<td>51</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>155</td>
<td>40</td>
<td>62</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>105</td>
<td>47.6</td>
<td>50</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>60</td>
<td>45</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>56</td>
<td>42</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>43.3</td>
<td>39</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>44.4</td>
<td>20</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

2011

<table>
<thead>
<tr>
<th>Months 2011</th>
<th>No. of samples</th>
<th>% of polluted samples</th>
<th>No. of samples polluted with total coliform</th>
<th>E.coli</th>
<th>Salmonella spp.</th>
<th>V.cholera</th>
<th>Pseudomonas spp.</th>
<th>Proteus mirabilis</th>
<th>Aeromonas hydrophila</th>
<th>Enterobacter cloacae</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>44.4</td>
<td>32</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>49.1</td>
<td>26</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>64.8</td>
<td>35</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>64.3</td>
<td>47</td>
<td>30</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>72</td>
<td>72</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>63.1</td>
<td>41</td>
<td>29</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>48.2</td>
<td>27</td>
<td>13</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>55.8</td>
<td>29</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
<td>69.8</td>
<td>44</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>71.2</td>
<td>37</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>33.3</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>41.6</td>
<td>20</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Total 1567 54.4 853 519 5 3 25 39 13 104

Five isolates of *Salmonella* spp. were isolated and identified from tap water from different parts of Baghdad governorates depend on morphology, round pale colony with black center on XLD, SS agar. The outcome of biochemical tests clarified that the two isolates of *Salmonella* spp., fermented glucose not lactose appeared as red surface and yellow bottom of KIA slant with gas and IFO formation for their further conformation API20E and Mini Api 32 were used also in diagnosis according to Jawits et al.,(2001) and Amini et al.(2010). The serotyping
detection the pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module.

Dr. Ashoa'q Basem Jasem, Dr. Amna Nama, Dr. Ahsan Mhdi Alsqr

tests results reflected that all isolates designated as *S. typhimurium* depend on the anti-sera agglutination which done in CPHL.

2- Detection the pathogenesis of the *Salmonella* :- Which includes :-

Animal module and the effect of toxins on organs:-

After 5 h from inoculation, the group two of mice were killed for the detection of FA . clinical examinations showed deterioration in health of the

animals with presence of wetness around the anus corrodes, after post – mortem the intestines appeared red and inflated with the liquids this gave positive FA (≥100). After 24 h mice were sacrificed and the pathogenesis effects on different tissues were screened compared with control mice tissues.

Histopathological changes of intestinal section showed slight shorting of intestinal villi with mild inflammatory cells Fig(1 B), when compared to the section of normal group Fig (1A).

Fig (1):- normal structure villi

Fig (2):- Inflammatory cells villi

A- Section of normal intestine showing normal structure villi appearance (x200)(H and E).

B- Section of intestine showing shortening of intestinal villa with mild chronic inflammatory cells infiltrate. (X200)(H and E).

A- Intestine (control)

B- Intestine infected.

In other hand Fig(2A) showed normal section of gastric tissue with normal glandular structure appearance of control group , While fig(2B) look like normal appear after 24 h from inoculation.
The investigation results showed that liver suffered from mild degenerative changes, mild inflammatory cells infiltration and necrosis fig(3 B), compared with fig(3 A) which showed the normal texture of liver structure appearance of hepatic cells and central vein.

The renal tissue showed mild inflammatory changes after 24h post-inoculation fig(4B), compared with control group fig(4A).
detection the pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module

Dr. Ashoa'q Basem Jasem, Dr. Amna Nama, Dr. Ahsan Mhdi Alsqr

renaltubels and glomerular

Fig (4):-

B- No effects appears on renal tissue (X200)(H and E).

A-Kidney(control) B-Kidney(infected, look like normal, no effects)

Salmonella typhimurium most often cause gastroenteritis with watery diarrhea, toxin production can detected in animals models such as sucking mice in which oral inoculation stimulate fluid accumulation. The mechanisms by which stimulate intestinal secretions through intestinal epithelial cells production of proinflamatory cytokines in response to invasiveness. Such as interleukins -8(IL-8) produce and secreted a cross the membrane of epithelial cells after attachment of *S. typhimurium* leading to cyclic AMP level elevated in the in infected intestine (Sears and Kaper, 1996).
detection the pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module.

Dr. Ashoa'q Basem Jasem, Dr. Amna Nana, Dr. Ahsan Mhdi Alsqr

References:

detection the pathogenicity of *Salmonella* spp isolated from drinking water in some region of Baghdad city in animal module..............

Dr. Ashoa'q Basem Jasem, Dr. Amna Nama, Dr. Ahsan Mhdi Alsqr

Pererat K; and Alan M. Development of a PCR assay for the identification of *Salmonella enterica* serovar Brandenburg. *Journal of Medical Microbiology* (2008), 57,1223-1227.

تشخيص امراضة بكتريا
المعزولة من مياه الشرب المجفف لبعض مناطق بغداد
في الحيوانات المختبرية

د.أ. شواق باسم جاسم
أ.د. أمنة نعمة الثويني
معهد الهندسة الوراثية والتقنية الأحيائية للدراسات العليا
أ.د. أسامة مهدي الصقر
مركز أمراض المناطق الحارة

الخلاصة:

جمعت 1567 عينة من مياه الشرب المجفف لبعض مناطق بغداد من بداية شهر نيسان
للعام 2010 ولغاية نهاية كانون الأول من العام 2011. وقد فحصت جميع العينات
بكتريولوجيا بالطريقة التقليدية لتشخيص بكتريا القولون الكبدية والبرازية والابشريشية القولونية
فضلا عن البكتريا المرضية الأخرى ومنها السلعونيلاء. وتم دراسة امراضية خاصة عزلات
منها وقابلتها على انتاج الذئاب من خلال اختبار تجريب الفنادن، وأظهرت جميع العزلات
البكتيرية قدرتها على تجمعي السوائل بعد 5 ساعات من التجريبي وظهور تغيرات نسيجية بعد
24 ساعة من أهمها تلف في بطانة الأمعاء، تفاعل الهيموغراف وورك الزغابات مع ارتفاع في
الخلايا الالتهابية. فضلا عن التغيرات النسيجية للخلية والتي ظهرت على شكل تنخير بسيط
في الطبقة المخاطية المبطنة للمعدة، في حين أظهرت الخلايا الكبدية تنخير مع ارتشاح واضح
للخلايا الالتهابية