Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory

Sabah H. Malih

College of Education (Ibn – AL – Haitham)
University of Baghdad

Abstract:
We obtain generalization of best approximation for contractive condition of integral type and we next consider two results on invariant approximation also analyze the existence the application of fixed point and extend some known results of Habiniak [7], Sahab [10], Kumar [5] Branciari [1], Singh [12].

1. Introduction and preliminaries

The purpose of this paper is to study and analogous the invariant best approximation in the setting contractive condition of integral inequality in metric space and analyze the existence the application of fixed point. The generalization of applications on best approximation obtaining fixed point also common fixed point. Recently Sahab [10] have obtained some results on approximation theory in the setting contraction mapping without integral type. We prove the results on best approximation theory for mappings satisfying a general contractive condition of integral type. These results unify and extend some results in Habiniak [7], Sahab [10], Kumar [5] Branciari [1].

The following definition and results will be needed:

Let C be an nonempty subset of a metric space $(X, d)$. A mapping $T : C \rightarrow C$ is a compact mapping [4] if for every bounded subset $K$ of $C$, $T(K)$ (closure of $T(K)$) is compact. The restriction $T|_C : C \rightarrow X$ where $T : X \rightarrow X$. A mapping $T : C \rightarrow C$ is called contraction mapping [3] if $d(Tx, Ty) \leq \lambda d(x, y)$ for all $x, y \in C$; $\lambda \in [0, 1)$. If $\lambda = 1$ then $T$ is called non expansive mapping. Let $T, f : C \rightarrow C$ be a mapping $T$ is called f contraction[6], [11] if $d(Tx, Ty) \leq \lambda d(fx, fy)$ for all $x, y \in C$; $\lambda \in [0, 1)$ if $\lambda = 1$, then $T$ is called f-nonexpansive mapping. If $T(C) \subseteq C$ then $C$ is called a $T$--invariant subset of $X$. 
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory

Definition 1.1: [8], [4]

Let \( C \) be a subset of a metric space \((X, d)\), for any \( x \in X \) we denote
i - \( d(x, C) = \inf \{d(x, y) : y \in C\} \)
ii - If any \( y \in C : d(x, y) = d(x, C) = \inf \{d(x, z) : z \in C\} \) where \( x \in X \) is called \( y \) approximation to \( x \) by \( C \).
iii - \( P_c(x) = \{y \in C : d(x, y) = d(x, C)\} \) such that \( P_c(x) \) is called the set of all best approximation of \( x \) from \( C \).
iv - If for each \( x \in X \), \( P_c(x) \) is nonempty, then \( C \) is called proximinal. \( P_c(x) \) is bounded subset of \( X \) also if \( C \) is closed then \( P_c(x) \) is closed.

Definition 1.2: [8]

Let \( f \) and \( T \) be two self maps on a set \( X \). Maps \( f \) and \( T \) are said to be commuting if \( fT \xi = T \xi f \) for all \( x \in X \).

If \( f \xi = T \xi \) for some \( x \in X \) then \( x \) is called coincidence point of \( f \) and \( T \).

Definition 1.3: [13]

Let \((X, d)\) be a metric space and \( C \subset X \) and \( f, T : C \rightarrow C \), be a mappings then:
i - \( T \) and \( f \) are called compatible if \( f \xi_n, T \xi_n \in C \) for all \( n \) and
\[ \lim_{n \to \infty} d(Tf \xi_n, fT \xi_n) = 0, \]
whenever \((\xi_n)\) is a sequence such that:
\[ \lim_{n \to \infty} T \xi_n = \lim_{n \to \infty} f \xi_n = t \]
for some \( t \) in \( C \).
ii - \( f \) and \( T \) are called weakly compatible if they commute at their coincidence points (i.e.) \( Tf \xi = fT \xi \) whenever \( T \xi = f \xi \).

Remark 1.4: [2]

i - Every compatible is weakly compatible but the converse is not true.
ii - Every commute mappings is compatible mapping but the converse is not true.

Definition 1.5: [9]

Let \( C \) be a subset of metric space \((X, d)\) and \( \Delta = \{f_\alpha\}, \alpha \in \Gamma \) a family of functions from \([0,1]\) into \( C \) such that \( f_\alpha(1) = \alpha \) for each \( \alpha \in \Gamma \). The family \( \Delta \) is said to be contractive if whenever there exists a function \( \Psi : (0,1) \rightarrow (0,1) \) such that for all \( \alpha, \beta \in \Gamma \) and \( s \in (0,1) \) we have
\[ d(f_\alpha(s), f_\beta(s)) \leq \Psi(s)d(\alpha, \beta). \]
The family is said to be jointly continuous if \( s \to s_0 \) in \([0,1]\) and \( \alpha \to \alpha_0 \) in \( \Gamma \) imply that \( f_\alpha(s) \to f_{\alpha_0}(s) \) in \( C \).
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory

Sabah H. Malih

Hence property (w) on contractive jointly continuous family $\Delta$ can now be defined as:

**Definition 1.6 : [9]**

Let $T$ be a self map of the set $C$ having a family of function
$\Delta = \{ f_x \}, x \in C$ as defined above then $T$ is said to satisfy the property (w) if
$T(f_x(s)) = f_{Tx}(s)$, for all $x \in C$ and $s \in [0, 1]$.

**Definition 1.7 : [1]**

Let $(X, d)$ be a metric space, $T : X \to X$ is called general contractive inequality of integral type if there exist a real number $\lambda \in (0, 1)$ such that for each $x, y \in X$, we have
$$\int_0^d(Tx \cdot Ty) \Theta(t)dt \leq \lambda \int_0^d(x \cdot y) \Theta(t)dt$$
where $\Theta : [0, +\infty) \to [0, +\infty)$ is a Lebesgue integrable mapping which is summable on each compact subset of $[0, +\infty)$ nonnegative and such that for each $\varepsilon > 0$, $\int_0^\varepsilon \Theta(t)dt > 0$.
The generalization of definition 1.5 by
$$\int_0^d(f_x(s) \cdot f_y(s)) \Theta(t)dt \leq \Psi(s) \int_0^d(x \cdot y) \Theta(t)dt$$

The following result would also be used in the sequel:

**Theorem 1.8 : [5]**

Let $T$ and $f$ be compatible self maps of a complete metric space $(X, d)$ satisfying the following conditions: $T(X) \subseteq f(X)$, $f$ is continuous

$$\int_0^d(Tx \cdot Ty) \Theta(t)dt \leq \lambda \int_0^d(x \cdot y) \Theta(t)dt$$
for each $x, y \in X$, $\lambda \in [0, 1)$,
where $\Theta : R^* \to R^*$ is a Lebesgue – integrable function, which is summable on each compact subset of $R^+$, non-negative, and such that for each $\varepsilon > 0$, $\int_0^\varepsilon \Theta(t)dt > 0$. Then $T$ and $f$ have a unique common fixed point.

2- Main Results

In this section we introduce two results best approximation and one result of fixed point we need the result fixed point the following.

**Theorem 2.1**
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory .................................................. Sabah H. Malih

Let \( T \) and \( f \) be weakly compatible self maps of a subset \( X \) of metric space \( (A, d) \) satisfying the following condition:

\[
\overline{\text{T}}(X) \subset f(X)
\]

\( \overline{T(X)} \) or \( f(X) \) is complete, \( \int_0^1 \int_0^1 d(x,y) \theta(t) dt \leq \lambda \int_0^1 \int_0^1 d(x,y) \theta(t) dt \), for each \( x, y \in X \), \( \lambda \in [0, 1) \), where \( \theta : [0, +\infty) \rightarrow [0, +\infty) \) is a Lebesgue-integrable function which is summable on each compact subset \([0, +\infty)\) non-negative, and such that for each \( \epsilon > 0 \), \( \int_0^\epsilon \theta(t) dt > 0 \)

Then \( T \) and \( f \) have a unique common fixed point

Proof:

Since \( T(X) \subset f(X) \), let \( x_0 \in X \), such that \( f x_1 = T x_0 \), \( x_1 \in X \)

In general \( x_n = f x_{n+1} = T x_n \), \( n = 0, 1, 2, 3 \ldots \)

Now

\[
\int_0^1 d(x_n, x_{n+1}) \theta(t) dt \leq \lambda \int_0^1 d(x_n, x_{n+1}) \theta(t) dt = \lambda \int_0^1 d(x_{n-1}, x_n) \theta(t) dt
\]

\[
\leq \lambda \int_0^1 d(x_{n-2}, x_{n-1}) \theta(t) dt
\]

\[
= \lambda^2 \int_0^1 d(x_{n-3}, x_{n-2}) \theta(t) dt
\]

\[
\vdots
\]

\[
= \lambda^n \int_0^1 d(x_0, x_1) \theta(t) dt \rightarrow 0
\]

Therefore \( \int_0^1 d(x_n, x_{n+1}) \theta(t) dt \rightarrow 0 \) as \( n \rightarrow \infty \) hence \( d(T x_n, T x_{n+1}) \rightarrow 0 \)

We now to show that \( (T x_n) \) is a Cauchy sequence suppose that \( (T x_n) \) is not Cauchy sequence then there exist an \( \epsilon > 0 \) and a sub sequence \( (T x_{n^{(p)}}) \) and \( (T x_{n^{(p)}}) \) such that for each positive integer \( p \); \( n^{(p)} \) is minimal in the sense that

\[
d(T x_{n^{(p)}}, T x_{n^{(p)}}) \geq \epsilon , \; d(T x_{n^{(p)}}, T x_{n^{(p)}}) < \epsilon
\]

If \( d(T x_{n^{(p)}}, T x_{n^{(p)}}) > \epsilon \) then:

\[
d(T x_{n^{(p)}}, T x_{n^{(p)}}) \leq d(T x_{n^{(p)}}, T x_{n^{(p)}}) + d(T x_{n^{(p)}}, T x_{n^{(p)}})
\]

\[
d(T x_{n^{(p)}}, T x_{n^{(p)}}) < d(T x_{n^{(p)}}, T x_{n^{(p)}}) + \epsilon
\]

Thus

Since \( d(T x_{n+1}, T x_n) \rightarrow 0 \) then \( d(T x_{n^{(p)}}, T x_{n^{(p)}}) \rightarrow 0 \) as \( p \rightarrow \infty \), also

\[
\int_0^1 \theta(t) dt \leq \int_0^1 d(x_{n^{(p)}}, x_{n^{(p)}}) \theta(t) dt \leq \lambda \int_0^1 d(x_{n^{(p)}}, x_{n^{(p)}}) \theta(t) dt
\]

862
When $p \to \infty$ then
\[
\int_{t_0}^{t_1} \phi(t) \, dt = \lambda \int_{t_0}^{t_1} d\left( T_{x_{n+1}}^{(t)}, T_{x_{n}}^{(t)} \right) \phi(t) \, dt
\]
\[
\int_{t_0}^{t_1} \phi(t) \, dt \leq \lambda \lim_{p \to \infty} \int_{t_0}^{t_1} d\left( T_{x_{n+1}}^{(t)}, T_{x_{n}}^{(t)} \right) \phi(t) \, dt = \lambda \int_{0}^{t_1} \phi(t) \, dt < \int_{0}^{t_1} \phi(t) \, dt
\]
Which is contradiction thus $d\left( T_{x_{n+1}}^{(t)}, T_{x_{n}}^{(t)} \right) \leq \epsilon$, also
\[
\int_{0}^{t_1} \phi(t) \, dt \leq \lambda \int_{0}^{t_1} d\left( f_{x_{n+1}}^{(t)}, f_{x_{n}}^{(t)} \right) \phi(t) \, dt = \lambda \int_{0}^{t_1} d\left( T_{x_{n+1}}^{(t)}, T_{x_{n}}^{(t)} \right) \phi(t) \, dt
\]
Which is contradiction thus $(T_{x_{n}}^{(t)})$ is a Cauchy sequence. By definition of $(f_{x_{n+1}}^{(t)})$ is also Cauchy sequence. Since $f(X)$ or $\overline{f(X)}$ is complete suppose that $\overline{f(X)}$ is complete then $T_{x_{n}}^{(t)} \to u \in \overline{f(X)}$ and by definition of $(f_{x_{n+1}}^{(t)})$ obtain $f_{x_{n+1}}^{(t)} \to u$. Since $u \in \overline{f(X)} \subset f(X)$, then $v \in X$ such that $u = T_{v}^{(t)}$
Also $u = f_{z}$, $z \in X$
Now if $n \to \infty$
\[
\int_{0}^{t_1} d\left( x_{n+1}, T_{x_{n+1}}^{(t)} \right) \phi(t) \, dt \leq \lambda \int_{0}^{t_1} d\left( f_{x_{n+1}}^{(t)}, f_{x_{n+1}}^{(t)} \right) \phi(t) \, dt = \lambda \int_{0}^{t_1} d\left( x_{n+1}, x_{n+1} \right) \phi(t) \, dt \to 0
\]
Thus $T_{x_{n}}^{(t)} \to T_{z}^{(t)} = u = f_{z}$
As $(T_{f})$ is weakly compatible and $T_{z}^{(t)} = f_{z}$ then $T_{u} = T_{f z} = f T_{z} = f u$, therefore $T_{u} = f u$
\[
\int_{0}^{t_1} d\left( x_{n}, x_{n+1} \right) \phi(t) \, dt = \lambda \int_{0}^{t_1} d\left( f_{x_{n+1}}^{(t)}, f_{x_{n+1}}^{(t)} \right) \phi(t) \, dt = \lambda \int_{0}^{t_1} d\left( x_{n}, x_{n} \right) \phi(t) \, dt \to 0
\]
Then $\int_{0}^{t_1} d\left( u, T_{u} \right) \phi(t) \, dt < \int_{0}^{t_1} d\left( u, T_{u} \right) \phi(t) \, dt$ Hence $T_{u} = u$
Thus $T_{u} = u = f u$
If $S \in C$ such that $S = T_{S} = f S$, then
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory

Sabah H. Malih

\[ \int_0^1 \phi(t) \, dt = \int_0^1 \phi(f(u, t)) \, dt \leq \lambda \int_0^1 \phi(t) \, dt = \lambda \int_0^1 \phi(t) \, dt \]

Then \[ \int_0^1 \phi(t) \, dt \leq \lambda \int_0^1 \phi(t) \, dt < \int_0^1 \phi(t) \, dt \]

Hence \( s = u \)

There for the unique common fixed point.

**Theorem 2.2:**

Let \((X, d)\) be a metric space and \(T : X \rightarrow X\) with fixed point \(u \in X\) satisfying

\[ \int_0^1 \phi(t) \, dt \leq \lambda \int_0^1 \phi(t) \, dt \]

for each \(x, y \in X, \lambda \in (0, 1)\)

where \( \phi : (0, +\infty) \rightarrow (0, +\infty) \) is a Lebesgue-integrable function which assumable on each compact subset of \([0, +\infty)\), nonnegative, and such that for each \(\varepsilon > 0; \int_0^\varepsilon \phi(t) \, dt > 0\). If \(C\) closed \(T\) invariant subset of \(X\), further the restriction \(TI_C\) is a compact, then the set \(R_T(u)\) of best approximation is nonempty.

**Proof:**

Let \( \varepsilon = d(u, C), \varepsilon > 0 \) then there exist a minimizing sequence \((y_n)\) in \(C\) such that \( \lim d(u, y_n) = \varepsilon \)

Since \((y_n)\) is bounded sequence. Since \(TIC\) is compact

Then \((TY_n)\) is a compact subset of \(C\) and so \((TY_n)\) has a convergent subsequence \(\{TY_{n_i}; i \geq 1\}\) with \( \lim_{n \to \infty} Y_{n_i} = x \) where \(x\) in \(C\)

Now:

\[ d(u, C) = \varepsilon = \lim_{n \to \infty} d(u, y_n), \quad \int_0^1 \phi(t) \, dt = \lim_{n \to \infty} \int_0^1 \phi(t) \, dt \]

If

\[ \varepsilon > 0 \text{ then } \int_0^1 \phi(t) \, dt = r, \quad r > 0 \]

Suppose that \(d(u, \varepsilon) \geq \varepsilon, \) now: either \(d(u, \varepsilon) = \varepsilon, \) then

\[ d(u, \varepsilon) = d(u, C) = \varepsilon; \quad \int_0^1 \phi(t) \, dt = r \]

or \(d(u, x) > \varepsilon, \) then:

\[ r < \int_0^1 \phi(t) \, dt = \lim_{n \to \infty} \int_0^1 \phi(t) \, dt \leq \lim_{n \to \infty} \int_0^1 \phi(t) \, dt \]

\[ = \lim_{n \to \infty} \int_0^1 \phi(t) \, dt \]

\[ < \lim_{n \to \infty} \int_0^1 \phi(t) \, dt = r \]

Therefore \( r < \int_0^1 \phi(t) \, dt < r \) hence \(d(u, x) = \varepsilon\)
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory........................................ Sabah H. Malih

Thus \( d(u, x) = \varepsilon = d(u, C) \) then \( x \) is best approximation to \( u \) by \( C \)

Therefore \( p_c(u) \) is nonempty.

Theorem 2.3 :

Let \( (X, d) \) be a metric space, \( X \) has family \( \Delta \) and \( T, g : X \to X \) be two mappings and \( C \subseteq X \) such that \( C \) be a \( T \)-invariant subset of \( X \);
\( x_0 \in F(T) \cap F(g) \). Let \( g \) satisfies property \( (w) \), \( Tg = gT \) on \( D = P_c(x_0) \).

If \( D \) is nonempty and \( g(D) \subseteq D \) and \( T, g \) satisfying

\[
\int_0^\infty \varnothing(t) dt \leq \lambda \int_0^\infty \varnothing(\lambda x, \lambda y) \varnothing(t) dt, \lambda \in (0, 1),
\]

for each \( x, y \in D' = D \cup \{ x_0 \} \). Where \( \varnothing(t) : [0, +\infty) \to [0, +\infty) \) is

a Lebesgue-integrable function which is summable, nonnegative and such that

for each \( \varepsilon > 0 \), \( \int_0^\varepsilon \varnothing(t) dt > 0 \) then

i- If \( \overline{T(D)} \) is compact and \( T \) is continuous and \( g(D) = D \), \( D \) is closed then \( D \cap F(T) \cap F(g) \neq \emptyset \).

ii- If \( D \) is compact and \( g \) is continuous also the range of \( f_\varnothing \) is contained in \( g(D) \) then \( D \cap F(T) \cap F(g) \neq \emptyset \).

iii- If \( \overline{T(D)} \) is compact on \( D \) and \( g \) is continuous \( g(D) = D \), \( D \) is closed then \( D \cap F(T) \cap F(g) \neq \emptyset \).

Proof :

Let \( y \in D \) then \( g^2 y \in D \) since \( g(D) \subseteq D \). Further \( y \in C \) and then \( Ty \in C \) since \( C \) be \( T \)-invariant subset of \( X \).

let \( d(x_0, gy) = d(x_0, C) = \varepsilon > 0 \); \( \int_0^\varepsilon \varnothing(t) dt = r > 0 \)

suppose that \( d(x_0, Ty) \geq \varepsilon \)

Now: either \( d(x_0, Ty) = \varepsilon \) then \( Ty \in D \)
or \( d(x_0, Ty) > \varepsilon \), then

\[
r < \int_0^\varepsilon \varnothing(t) dt = \int_0^\varepsilon \varnothing(t) dt \leq \lambda \int_0^\varepsilon \varnothing(\lambda x, \lambda y) \varnothing(t) dt = \lambda \int_0^\varepsilon \varnothing(t) dt < \int_0^\varepsilon \varnothing(t) dt = r
\]

Therefore \( r < \int_0^\varepsilon \varnothing(t) dt < r \) hence \( d(x_0, Ty) = \varepsilon \)

Hence \( Ty \in D \), then \( T : D \to D \). Choose \( \lambda_n \in (0, 1) \)

Such that \( (\lambda_n) \to 1 \), as \( n \to \infty \), then define \( T_n \) as \( T_n(x) = f_{\lambda_n}(x) \)
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory

Sabah H. Malih

For all $x \in D$, $T_n$ is well defined map from $D$ into $D$ for each $n$ and $T_n(D) \subseteq D$. Now $T$ commutes with $G$ and $G$ satisfying property(w) then

$$T_n(gx) = f_{T(gx)}(\lambda_n) = g(f_{T(y)}(\lambda_n)) = gT_n(x)$$

Thus $T_nG = G T_n$ for all $n \in N$ and for all $x \in D$, therefore

$$\int_0^1 \Theta(t) dt \leq \int_0^1 \Theta(t) dt \leq \Psi(s) \int_0^1 \Theta(t) dt$$

And

$$\int_0^1 \Theta(t) dt \leq \Psi(s) \int_0^1 \Theta(t) dt$$

For all $x, y \in D$

Thus $\int_0^1 \Theta(t) dt \leq \Psi(s) \int_0^1 \Theta(t) dt$ for all $x, y \in D$

Since $T_n$ commutes with $G$ then $T_n$ and $G$ are weakly compatible. If (i) $\overline{T(D)}$ is compact on $D$, then $\overline{T_n(D)}$ is compact also $\overline{T_n(D)}$ is complete and $T_n(D) \subseteq D = g(D)$ also $D$ is closed $\overline{T_n(D)} \subseteq D = g(D)$ then by theorem (2.1) $T_n$ and $G$ have common fixed point,

$x_n = T_n x_n = g x_n$ for all $n \in N$ and $x_n \in D$.

Since $\overline{T(D)}$ is compact then the sequence $(T x_n)$ has a subsequence $(T x_{n_i})$ converging to $y \in \overline{T(D)} \subseteq D = g(D)$

then $y = g v$, where $v \in D$ and $x_{n_i} = T_{n_i} x_{n_i} = g x_{n_i}$

Now : $x_{n_i} = g x_{n_i} = T_{n_i} x_{n_i} = f_{T y_{n_i}}(\lambda_{n_i}) \rightarrow f_y(1) = y$ as $n_i \rightarrow \infty$

Thus $x_{n_i} \rightarrow y$ and $T x_{n_i} \rightarrow T y$ by $T$ is continuous then $T y = y$

Also :

$$\int_0^1 \Theta(t) dt \leq \Psi(s) \int_0^1 \Theta(t) dt$$

$$\int_0^1 \Theta(t) dt \leq \Psi(s) \int_0^1 \Theta(t) dt$$

And

$$\int_0^1 \Theta(t) dt \leq \Psi(s) \int_0^1 \Theta(t) dt$$

Hence $\int_0^1 \Theta(t) dt \rightarrow 0$ as $n_i \rightarrow \infty$

Hence $\int_0^1 \Theta(t) dt \rightarrow 0$ then $T x_{n_i} \rightarrow T y = T y = y = g v$

Therefore $T v = g v$, then $T y = T g v = g T v = g y$

Hence $y = T y = g y$, then $D \cap F(T) \cap F(g) = \emptyset$

If (ii) $(D$ is compact and $G$ is continuous and range of $f_x$ is contained in $g(D)$ then $T_n(D) \subseteq g(D)$. 

866
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory........................................ Sabah H. Malih

Since $T_n^*$ commute with $g$ then $(T_n^*, g)$ are compatible then by theorem (1.8) 
then $x_n = T_n^* x_n = g x_n$

Where $x_n \in D$, but D is compact then $(x_n)$ has a subsequence $(x_{ni})$
converging to $y \in D$

Now : $x_{ni} = T_{ni} x_{ni} = g x_{ni} \rightarrow y$ as $n_i \rightarrow \infty$

Since $g$ is continuous and $x_{ni} \rightarrow y$ then $g x_{ni} \rightarrow g y$; but $g x_{ni} \rightarrow y$

then $g y = y$, also

$\int_0^{d(Tx_{ni}, Ty)} \phi(t) dt \leq \lambda \int_0^{d(g x_{ni}, g y)} \phi(t) dt \rightarrow 0$ as $n_i \rightarrow \infty$

thus :

$\int_0^{d(Tx_{ni}, Ty)} \phi(t) dt \rightarrow 0$ then $Tx_{ni} \rightarrow Ty$ as $n_i \rightarrow \infty$

Now :

$x_{ni} = T_{ni} x_{ni} = f_{T x_{ni}} (\zeta_{ni}) \rightarrow f_{Ty} (1) = Ty$

Therefore $x_{ni} \rightarrow Ty$ and $x_{ni} \rightarrow y$ then $Ty = y$ thus $Ty = gy = y \in D$

Hence $D \cap F(T) \cap F(g) = \emptyset$

iii $\overline{T(D)}$ is compact and D is closed also $g(D) = D , \ g$ is continuous, then by 
prove part (i) if $\overline{T(D)}$ is compact we have

$x_{ni} = T_{ni} x_{ni} = g x_{ni} \rightarrow y$ as $n_i \rightarrow \infty$

Since $\tilde{g}$ is continuous then $\tilde{g} x_{ni} \rightarrow \tilde{g} y$ also $g x_{ni}, g x_{ni} \rightarrow y$ and $x_{ni} \rightarrow y$

Hence $\tilde{g} y = y$, also $\int_0^{d(Tx_{ni}, Ty)} \phi(t) dt \leq \lambda \int_0^{d(g x_{ni}, g y)} \phi(t) dt \rightarrow 0$

Therefore $\int_0^{d(Tx_{ni}, Ty)} \phi(t) dt \rightarrow 0$ then $Tx_{ni} \rightarrow Ty$ as $n_i \rightarrow \infty$

Now

$x_{ni} = T_{ni} x_{ni} = f_{T x_{ni}} (\zeta_{ni}) \rightarrow f_{Ty} (1) = Ty$ as $n_i \rightarrow \infty$

Thus $x_{ni} \rightarrow Ty$ then $Ty = g y$ and $y \in g(D) = D$

Then $D \cap F(T) \cap F(g) = \emptyset$

Corollary 2.4:

Let $(X, d)$ be a metric space, $X$ having family $\Delta$, let $T : X \rightarrow X$ is 
continuous, $C \subseteq X$ such that $T(C) \subseteq C$ and $x_0 \in F(T)$ if D nonempty, 
compact and $\int_0^{d(Tx, Ty)} \phi(t) dt \leq \lambda \int_0^{d(x, y)} \phi(t) dt$ for all 
$x, y \in D' = D \cup \{x_0\}$, where $\phi(t) : R^+ \rightarrow R^+$ is Lebesgue–integrable

function which is summable, nonnegative and $\epsilon > 0$ ; $\int_0^{\epsilon} \phi(t) dt > 0$ then
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory..............................................................Sabah H. Malih

Proof:

If $\mathcal{G}$ is identity mapping in theorem (2.3) then $\mathcal{D} \cap \mathcal{F}(T) \neq \emptyset$

References:


التقريب الأفضل في الفضاء المتري لتطبيق الانكماش من النوع التكامللي وتطبيقات النقطة الصامدة لنظرية التقريب

صاحب حسن مالح

الخلاصة:

نحن نحصل على تعيمي للتقريب الأفضل لشرط الانكماش العام من النوع التكامللي في الفضاء المتري ونحن نضع نتيجتين على التقرب الأفضل. أيضاً نعمل

مجلة كلية التربية الأساسية – المجلة 20– العدد 84-2014
Best approximation in metric space for contractive mapping of integral type and Applications of fixed point to Approximation theory........................................................................................................ Sabah H. Malih

على ايجاد تطبيقات النقطة الصامدة و توسع بعض النتائج المعروفة للباحثين

869 مجلة كلية التربية الأساسية – المجلة 20- العدد 84- 2014