Reduction of Order Method for Solving Some Time-Fractional Differential Equations
Dr. Sajeda Kareem Radhi

Abstract
The fractional derivative is considered in modified Riemann-Liouville derivative sense. A reduction of order method is used for constructing exact solution of some time fractional differential equations. More new soliton solution is obtained for time-fractional Klein-Gordon equation, time-fractional Burgers equation and time-fractional Hirota-Satsuma coupled KdV system. This method can be applied to many other nonlinear fractional partial differential equations in mathematical physics. Keywords: Modified Riemann-Liouville derivative, time-fractional Klein-Gordon equation, time-fractional Burgers equation and time-fractional Hirota-Satsuma coupled KdV system.

1-Introduction
Fractional differential equations are generalizations of classical differential equations of integer order. The nonlinear fractional differential equations in mathematical physics have played a major role in various areas. These equations appear in a great variety of contexts, such as physics, biology, engineering, fluid flow, signal processing, control theory and fractional dynamics. Many powerful and efficient methods have been proposed to obtain numerical solutions and exact solutions of fractional differential equations so far. For example, these methods include the first integral method [1], the \((G'/G)\)-expansion method [2], the functional variable method [3], the invariant subspace method [4], the exp-function method [5], the integral transform method [6], the fractional sub-equation method [7], the generalized Exp-function method [8], the variational iteration method [9], the improved \((G'/G)\)-expansion method [10], the generalized \((G'/G)\)-expansion method [11], the homotopy analysis method [12], the expanding perturbation approach [13], the extended trial equation method [14]. Recently, M. Saravi [15] introduced a new method called pseudo-first integral method to look for traveling wave solutions of non-linear partial differential equations in this method the author use part of the first integral method [16], and then by reduction of order method [17]. In this paper, we propose a reduction of order method to establish exact solutions for time-fractional partial differential equations in the sense
Reduction of Order Method for Solving Some Time-Fractional Differential Equations

Dr. Sajeda Kareem Radhi

modified Riemann-Liouville derivative by Jumarie [18, 19]. To illustrate the validity and advantages of proposed method, we apply it to the time-fractional Klein-Gordon equation, the time-fractional Burgers equation and the time-fractional generalized Hirota-Satsuma coupled KdV system.

2- The modified Riemann-Liouville derivative and reduction of order method

The Jumarie's modified Riemann-Liouville derivative of order $\alpha$ is defined by the expression [19]

$$D_\alpha^\alpha f(x) = \left\{ \begin{array}{ll} \frac{1}{\Gamma(1-\alpha)} \int_0^x (x-\xi)^{-\alpha-1} (f(\xi)-f(0))d\xi, & \alpha < 0 \\ \frac{1}{\Gamma(1-\alpha)} \frac{d}{dx} \int_0^x (x-\xi)^{-\alpha-1} (f(\xi)-f(0))d\xi, & 0 < \alpha < 1, \end{array} \right. \quad (1)$$

$$D_\alpha^\alpha f(x) = \left\{ \begin{array}{ll} \frac{d^n}{dx^n} (f(\alpha-n)(x))^n, & n \leq \alpha < n+1, n \geq 1. \end{array} \right. \quad (2)$$

Some properties for the proposed modified Riemann-Liouville derivative are listed in [19] as follows:

$$D_\alpha^\alpha x^\gamma = \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)} x^{\gamma-\alpha}, \quad \gamma > 0, \quad (4)$$

$$D_\alpha^\alpha (f(x)g(x)) = g(x)D_\alpha^\alpha f(x) + f(x)D_\alpha^\alpha g(x) \quad (5)$$

$$D_\alpha^\alpha f|g(x)|^\alpha = f^\alpha g(x)D_\alpha^\alpha f(x)|g(x)|^\alpha \quad (6)$$

Where $f : \mathbb{R} \rightarrow \mathbb{R}, x \rightarrow f(x)$ denote a continuous (but not necessarily differentiable) function. We now describe the proposed method for finding exact solutions of nonlinear time-fractional differential equations as follows. Let us consider the time fractional differential equation with independent variables $x = (x_1, x_2, ..., x_m, t)$ and a dependent variable $u$,

$$F(u, D_\alpha^\alpha u, u_{x_1}, u_{x_2}, ..., D_\alpha^\alpha u_{x_1x_2}, ... ) = 0 \quad (7)$$

Using the variable transformation [1]:

$$u = (x_1, x_2, ..., x_m, t) = U(\xi), \quad \xi = x_1 + l_1 x_2 + ... + l_{m-1} x_m - \frac{\lambda t^\alpha}{\Gamma(1+\alpha)}, \quad (8)$$

Where $k, l$, and $\lambda$ are constants. The fractional differential Eq. (7) is reduced to a nonlinear ordinary differential equation

$$Q = (U(\xi), U'(\xi), U''(\xi), ...), \quad (9)$$

Where """" $\frac{d}{d\xi}$ By introducing a new independent variable $p = U'(\xi)$ then $U''(\xi) = p \frac{dp}{du}$, which change Eq.(9) to an ordinary differential equation of the form

912

مجلة كلية التربية الأساسية - المجلة 20- العدد 84-2014
Reduction of Order Method for Solving Some Time-Fractional Differential Equations

\[ N(u, p, \frac{dp}{du}) = 0 \] (10)

Now, we seek a solution for Eq.(10) by a desired method that has been considered in the ordinary differential equation textbooks [20].

3- Applications

In this section, we present three examples:

**Example 1: Time-fractional Klein-Gordon equation**

The following time-fractional Klein-Gordon equation:

\[ \frac{\partial^{2\alpha} u(x, t)}{\partial t^{2\alpha}} = \frac{\partial^2 u(x, t)}{\partial x^2} + a u(x, t) + c u^3(x, t), \quad t > 0, \ 0 < \alpha \leq 1 \] (11)

We introduce as in [1] the following transformations

\[ u(x, t) = U(\xi), \quad \xi = lx - \frac{\lambda t^\alpha}{\Gamma(1 + \alpha)} \] (12)

Where \( l, \lambda \) is constant. Substituting Eq.(12) into Eq.(11), then Eq.(11) is reduced to an ordinary differential equation:

\[ \lambda^2 \frac{\partial^2 U}{\partial \xi^2} = l^2 \frac{\partial^2 U}{\partial \xi^2} + a U + c U^3 \] (13)

This is a non linear second order ordinary differential equation free of \( \xi \).

The substitution \( U' = \frac{dU}{d\xi} = p \) and \( U'' = \frac{d^2 U}{d\xi^2} = p \frac{dp}{dU} \), reduces Eq.(13) to

\[ \lambda^2 p \frac{dp}{dU} = l^2 p \frac{dp}{dU} + a U + c U^3 \] (14)

This can be written as

\[ (\lambda^2 - l^2)pdp = aU + cU^3 \] (15)

Integrating Eq.(15) once and let the constants of integration to be zero, then

\[ p^2 = \frac{a}{\lambda^2 - l^2} U^2 + c \frac{U^4}{2} \] (16)

That is,

\[ p = \sqrt{\frac{c}{2} U} \sqrt{U^2 + \frac{2a}{c(\lambda^2 - l^2)}} \] (17)

Since \( p = U' = \frac{dU}{d\xi} \), then

\[ U \sqrt{U^2 + \frac{2a}{c(\lambda^2 - l^2)}} = \sqrt{\frac{c}{2}} d\xi \] (18)
Reduction of Order Method for Solving Some Time-Fractional Differential Equations

Dr. Sajeda Kareem Radhi

The solution of Eq.(18) is

\[ -\sqrt{\frac{c(\lambda^2 - l^2)}{2a}} \text{csch}\left(\sqrt{\frac{c(\lambda^2 - l^2)}{2a}} \xi + \xi_0\right) = \sqrt{\frac{c}{2}} \xi_0 \]  

(19)

By setting \( \xi_0 = 0 \), \( U(\xi) = u(x,t) \) and \( \xi = lx - \frac{\lambda t^\alpha}{\Gamma(1+\alpha)} \), then Eq.(19)

\[ u(x,t) = \sqrt{\frac{2a}{c(\lambda^2 - l^2)}} \text{csch}\left(\frac{a}{\lambda^2 - l^2} (dx - \frac{\lambda t^\alpha}{\Gamma(1+\alpha)})\right) \]

(20)

This is a solution for Eq.(11).

Remark 1: In [1], the author solved Eq.(11) by first integral method and obtained four exact solutions different from our solution Eq.(20), while in [3], the authors solved Eq.(11) by functional variable method and obtained four exact solutions, one of them is agreement with our solution Eq.(20).

Example 2: Time – fractional Burgers equation

The following time-fractional Burgers equation:

\[ \frac{\partial^\alpha u}{\partial t^\alpha} + \varepsilon u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} = 0, \quad t > 0, \quad 0 < \alpha \leq 1 \]  

(21)

Where \( \alpha \) is a parameter describing the order of the fractional time derivative.

For our purpose, we introduce the following transformations [1]:

\[ u(x,t) = U(\xi); \quad \xi = lx - \frac{\lambda t^\alpha}{\Gamma(1+\alpha)} \]

(22)

Where \( l, \lambda \) is constant. Using Eq.(22) carries Eq.(21) into an ordinary differential equation as follows:

\[ -\lambda U'' + 1 \varepsilon UU' - l^2 v U'' = 0 \]

(23)

Where \( U' = \frac{dU}{d\xi} \). By integrating Eq.(23) once and considering the constants of integration to be zero, then we obtain the ordinary differential equation

\[ -\lambda U + 1 \varepsilon \frac{U^2}{2} - l^2 v U' = 0 \]

(24)

The substitution \( U' = p \), reduces Eq.(24) ,to

\[ -\lambda U + 1 \varepsilon \frac{U^2}{2} - l^2 v p = 0 \]

(25)

Eq.(25) can be written as

\[ -\lambda U + 1 \varepsilon \frac{U^2}{2} = l^2 v \frac{dU}{d\xi} \]

(26)
Reduction of Order Method for Solving Some Time-Fractional Differential Equations ……………………………… Dr.Sajeda Kareem Radhi

The variables are separated, then integrating both sides of Eq.(26) and let the constant of integration equal to zero, this leads to

\[ U(\xi) = \frac{2\lambda}{\Gamma(1+\alpha)} \left( \frac{1}{1 - e^{\lambda \xi}} \right) \]

Now we substitute \( U(\xi) = u(x,t) \) and \( \xi = lx - \frac{\lambda t^\alpha}{\Gamma(1+\alpha)} \), then Eq. (27) becomes

\[ u(x,t) = \frac{2\lambda}{l \Gamma(1+\alpha)} \left[ \frac{1}{1 - e^{\frac{\lambda}{l} (lx - \frac{\lambda t^\alpha}{\Gamma(1+\alpha)})}} \right] \]

Remark 2: In [2], the authors solved Eq.(21) by \((G'/G)\)- expansion method and obtained three exact solutions different from our solution Eq.(28).

Example 3: Time – fractional generalized Hirota-Satsuma coupled KdV system.
Let us apply our method to the generalized Hirota-Satsuma coupled KdV system which is of the form

\[ D_t^\alpha u = \frac{1}{4} u_{xxx} + 3uu_x + 3(-v^2 + w)_x, \]

\[ D_t^\alpha v = -\frac{1}{2} v_{xxx} - 3uv_x, \]

\[ D_t^\alpha w = \frac{1}{2} w_{xxx} - 3uw_x, \quad 0 < \alpha < 1, \]

Where \( u = u(x,t), \ v = v(x,t) \) and \( w = w(x,t) \). For our purpose, we introduce the following transformations as in [1]:

\[ u(x,t) = \frac{1}{\lambda} U(\xi)^2, \ v(x,t) = -\lambda + U(\xi), \ w(x,t) = 2\lambda^2 - 2\lambda U(\xi), \ \xi = x - \frac{\lambda t^\alpha}{\Gamma(1+\alpha)} \]

Where \( \lambda \) is a constant. Substituting Eq.(30) into Eq.(29), we can see that Eq.(29) are reduced into an ordinary differential equation

\[ \frac{\partial^2 U}{\partial \xi^2} + 2U^3 - 2\lambda^2 U = 0 \]

If we suppose \( \frac{dU}{d\xi} = p \) and \( \frac{d^2 U}{d\xi^2} = \frac{dp}{dU} \), then Eq.(31) converts to

\[ \lambda p \frac{dp}{dU} + 2U^3 - 2\lambda^2 U = 0 \]

This can be written

\[ \lambda \ p \ dp = (2\lambda^2 U - 2U^3) \ du \]
Reduction of Order Method for Solving Some Time-Fractional Differential Equations

The variables are separated, then once integration leads to
\[ p^2 = 2\lambda U^2 - \frac{1}{\lambda} U^4 + C \]  
(34)

Let \( C = 0 \), then
\[ p = U \sqrt{2\lambda - \frac{1}{\lambda} U^2} \]  
(35)

Since \( p = \frac{dU}{d\xi} \), then
\[ \frac{dU}{U \sqrt{2\lambda - U^2}} = \frac{1}{\sqrt{\lambda}} d\xi \]  
(36)

By integrating both sides of Eq.(36), then
\[ -\frac{1}{\sqrt{\lambda}} \text{sech}^{-1}\left(\frac{U}{\sqrt{2\lambda}}\right) = \frac{1}{\sqrt{\lambda}} \xi + B \]  
(37)

By setting \( B = 0 \), Eq.(37) become
\[ U(\xi) = \lambda \sqrt{2} \text{sech}(\sqrt{2\lambda} \xi) \]  
(38)

Now, we substitute Eq.(38) in Eq.(30), and \( U(\xi) = u(x,t), \) then
\[ u(x,t) = 2\lambda \text{sech}^2\left[\sqrt{2\lambda}(\frac{\lambda t^\alpha}{\Gamma(1+\alpha)} - x)\right] \]
\[ v(x,t) = -\lambda + \lambda \sqrt{2} \text{sech}\left[\sqrt{2\lambda}(\frac{\lambda t^\alpha}{\Gamma(1+\alpha)} - x)\right] \]  
(39)

\[ w(x,t) = 2\lambda^2 - 2\lambda^2 \sqrt{2} \text{sech}\left[\sqrt{2\lambda}(\frac{\lambda t^\alpha}{\Gamma(1+\alpha)} - x)\right] \]

Eq.(39) is the solution of Eq.(29).

Remark 3: In [1], the author solved Eq.(29) by using first integral method and obtained two exact solutions different from our solution, while in [3], the authors solved by functional variable and obtained two exact solution agreement with our solution Eq.(39).

4- Conclusions
The reduction of order method is applied successfully for solving the time-fractional Klein-Gordon equation and the time-fractional Burgers equation and the time-fractional Hirota-Satsuma coupled KdV system. The performance of this method is reliable, effective and produce easily exact solutions for several families of time-fractional differential equations and on comparing the proposed method in this article with the other methods used in [1, 2, 3], we find that the reduction of order method is simpler than those methods.
Reduction of Order Method for Solving Some Time-Fractional Differential Equations ................................. Dr.Sajeda Kareem Radhi

References
Reduction of Order Method for Solving Some Time-Fractional Differential Equations ............................... Dr.Sajeda Kareem Radhi


طريقة تخفيض الرتبة لحل بعض المعادلات التفاضلية الكسورية

د. ساجدة كريم راضي
الجامعة المستنصرية / كلية الهندسة / قسم المواد

الخليصة

في هذا البحث استخدمت طريقة تخفيض الرتبة مع استخدام تعريف لافويل - ريمان للمشتقة الكسورية وإيجاد الحلول الحقيقية لبعض المعادلات الكسورية التفاضلية المعروفة وهي Burgers equation و Klein-Gordon equation و Hirota-Satsuma coupled KdV system. هذه الطريقة ممكن تطبيقها لبقيا المعادلات الجزئية غير خطوية الكسورية في مجال التطبيقات الرياضية الفيزيائية.