Best Approximation in Modular Spaces By Type of Nonexpansive Maps

Salwa Salman Abed*, Nadia Jasim Mohammed

Department of Mathematics, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Iraq

Abstract
This paper presents results about the existence of best approximations via nonexpansive type maps defined on modular spaces.

Keywords: Modular spaces, best approximation, fixed points. AMS (2010) subject classification: 46B20, 47H09.

1. Introduction and Preliminaries

Modular spaces are extensions of Lebesgue, Riesz, and Orlicz spaces of integrable functions [1]. A general theory of modular linear spaces was founded by Nakano 1950 [2]. Nakano’s modulars on real linear spaces are convex functionals. Nonconvex modulars and the corresponding modular linear spaces were constructed by Musielak and Orlicz (we refer to [2]). In 2006, Vyacheslav Chistyakov [3, 4] was introduced the concept of a metric modular on a set, inspired partly by the classical linear modulars on function spaces employed by Nakano and other in the sense of Chistyakov.

In the formulation given by Kowalskowskii[5], "a modular on a linear space \mathcal{V} over the field $\mathcal{K}(= \mathbb{R}$ or \mathbb{C}) is a function $m: \mathcal{V} \to [0, \infty)$ such that

(i) $m(x) = 0 \iff x = 0$;
(ii) $m(\alpha x) = m(x)$ for $\alpha \in \mathcal{K}$ with $|\alpha| = 1$, for all $x \in \mathcal{V}$;
(iii) $m(\alpha x + \beta y) \leq m(x) + m(y)$ such that $\alpha, \beta \geq 0$, for all $x, y \in \mathcal{V}$.

Moreover, modular m is called convex, if (iii) replaced by
(iii') $m(\alpha x + \beta y) \leq \alpha m(x) + \beta m(y)$ if $\alpha, \beta \geq 0, \alpha + \beta = 1$ for all $x, y \in \mathcal{V}.$"

"A sequence $\{v_n\} \subset \mathcal{V}$ is said to be γ-convergent to $v \in \mathcal{V}$ and write $v_n \to v$ if $m(v_n - v) \to 0$ as $n \to \infty$. A sequence $\{v_n\}$ is called Cauchy whenever $m(v_n - v_m) \to 0$ as $m,n \to \infty$. Also, \mathcal{V} is called complete if any Cauchy sequence in \mathcal{V} is convergent. A subset $B \subset \mathcal{V}$ is called closed if for any sequence $\{v_n\} \subset B$, convergent to $v \in \mathcal{V}$, we have $v \in B$" [6].

"A closed subset $B \subset \mathcal{V}$ is called compact if any sequence $\{v_n\} \subset B$ has a convergent subsequence" [7].

"A selfmap J on $B \subset \mathcal{V}$ is called contraction mapping if $\exists h \in (0,1)$ for all v, u in \mathcal{V}, $m(J(v) - J(u)) \leq h m(v - u)$ and if $h = 1$ then J is called a non-expansive mapping" [7].

"A map J is demi-continuous at 0 if $\{v_n\} \subset B, v_n$ converges weakly to $v, w_n \in J(v_n)$ and $w_n \to 0 \Rightarrow 0 \in J(v)$.

\mathcal{V} is said to be Opial if for every sequence $\{v_n\}$ in \mathcal{V} weakly convergent to $v \in \mathcal{V}$ the inequality

*Email: salwaalbundi@yahoo.com
\[\lim_{n \to \infty} \inf (v_n - v) < \lim_{n \to \infty} \inf (v_n - u) \]

holds for all \(u \neq v \) [7].

"Let \(V \) and \(W \) be two modular spaces, recall that a set-valued mapping \(f: V \to W \) is a subset of \(V \times W \) with domain \(\mathfrak{F} \); equivalently, \(f \) is a point to set mapping assigning to each \(u \in V \) a nonempty subset \(f(u) \) of \(W \).

let \(v \in V \), \(v \) is called a fixed point of \(S \) if \(v \in f(v) \) (when \(S \) is single valued, \(v \) is fixed point of \(S \) if \(v = f(v) \) A set-valued mapping \(f \) is upper semi continuous (shortly, u.s.c.) if and only if the set \(\{ u \in V : f(u) \cap B \neq \emptyset \} \) is closed for each closed subset \(B \) of \(W \)." See [8].

"Consider \(f \neq \emptyset \subset V \), the element \(y \in B \) is a best approximation for a given \(x \in V \); if

\[m(x - y) = d_m(x, B) = \inf_{y \in B} m(x - y) \]

and \(P_B(x) \) or \(Px \) the set of all elements of best approximation of \(x \) by \(B \).

A subset \(B \) is called Chebysev if \(\forall x \in V, \exists ! y \in B \) such that

\[m(x - y) = d_m(x, B). \]

Main Results.

First we start with the following definition:

Definition 1: A multivalued map \(f: B \to 2^B \) is called \(*\)-nonexpansive if \(\forall x, y \in B \) and \(a_x \in f(x) \) with

\[m(x - a_x) = \sigma(x, f(x)), \]

\[\exists a_y \in f(y) \text{ with } m(y - a_y) = \sigma(y, f(y)) \]

\[\exists m(a_x - a_y) \leq m(x - y). \]

Remark (2) The concept of \(*\)-nonexpansive map coincides with a nonexpansive for a single valued map. Thus we have the result shown in [10].

Define \(*\)-nonexpansive map \(K: B \to 2^B \) by

\[K(x) = \bigcup \{ P_y(y) : y \in f(x), \sigma(f(x), B) = \sigma(y, B) \} \]

For the first result, fix \(C(B) \) as the class of all nonempty compact subsets of \(B \) and \(b \)-starshaped mean starshaped with starcenter at \(b \). Then we have the following

Theorem 2: let \(B \) be a nonempty weakly compact \(b \)-starshaped subset of complete convex modular spaces \(V, K \) as in (1) and \(f: B \to C(B) \) is u.s.c such that \(3x_0 \in B, \exists x_0 \in f(x_0), m(a_{x_0}) < \infty \). If \(\forall x, K(x) \) is compact Chebyshev and \(I - K \) is demi-closed at 0 then \(\exists z \in B \exists \sigma(z, f(z)) = \sigma(f(z), B) \).

Proof:

The compactness of \(f(x), \forall x \) implies that \(K(x) \neq \emptyset \). Since \(K(x) \) is Chebyshev so by definition of \(*\)-nonexpansive, \(a_x \in K(x) \) is unique and \(\exists ! a_y \in K(y), \forall y \in B \exists \)

\[m(a_x - a_y) \leq m(x - y) \]

Let \(f_n: B \to B \) such that \(f_n(x) = \theta_n a_x + (1 - \theta_n) b \), where \(0 < \theta_n < 1, \forall n \) and \(\theta_n \to 1 \) as \(n \to \infty \).

By convexity of \(V \) and (2), we have \(\forall x, y \in B, \)

\[m(f_n(x) - y) \leq \theta_n m(x - y). \]

So, \(\forall n, f_n \) is contraction and hence, by [6], has a fixed point \(z_n \in B \), the sequence \(\{ z_n \} \) has a subsequence, also say\(\{ z_n \} \), converging weakly to \(z \in B \). By definition of \(f_n, \exists a_n \in K(z_n) \exists \)

\[z_n = f_n(z_n) = \theta_n a_n + (1 - \theta_n) b \]

And then

\[y_n = a_n - z_n = (1 - \theta_n) (a_n - b) \to 0 \text{ as } n \to \infty \]

Since \(I - K \) is demi-closed at 0, the sequence \(\{ z_n \} \) converges weakly to \(z, y_n \to 0 \) where \(y_n = a_n - z_n \in K(z_n) - z_n \). Thus \(0 \in (I - K)(z) \Rightarrow z \in K(z) \).

Therefore, for some \(w \in f(z) \) with

\[m(f(z)) = \sigma(w, B), z \in P(w). \]

We have

\[\sigma(z, f(z)) \leq m(z - w) = \sigma(w, B) = \sigma(f(z), B) \leq \sigma(z, f(z)) \]

\[\Rightarrow \sigma(z, f(z)) = \sigma(f(z), B) \]

The proof is complete.

Now, we state the definition of weak nonexpansive map (shortly, called \(w \)-nonexpansive map)

Definition 3: A multivalued mapping \(f: B \to 2^B \) is called \(w \)-nonexpansive if \(\forall x \in B, a_x \in f(x) \) there is \(a_y \in f(y), \forall y \in B \exists m(a_x - a_y) \leq m(x - y) \).

Theorem 4: The result of Theorem (2) also hold if \(V \) satisfies Opial's condition instead of demi-closeness.
Proof: Since the *-nonexpansive mapping K is weakly nonexpansive. So, $\forall n, a_n \in K(x_n), \exists b_n \in K(z) such that$

\begin{equation}
m(a_n - b_n) \leq m(x_n - z)
\end{equation}

As $K(z)$ is compact so $\langle b_n \rangle$ converges to some $u \in K(z)$. Combination of (4) with $b_n \to 0 \text{ and } z_n \to u \Rightarrow$

$$\liminf m(x_n - b_n) = \liminf m(x_n - u) \leq \liminf m(x_n - z)$$

By Opial's condition, we have

$$\liminf m(x_n - z) < \liminf m(x_n - u).$$

Thus $z = u \in K(z)$. Therefore, the final step of proof follows from previous argument.

About invariant best approximation we prove the following result

Theorem (5): Let B be a closed subspace of a convex modular space V and $J: B \to V$ be a continuous map. If $Pf:B \to B$ is linear nonexpansive map such that $\exists u_0 \in B$ with $(Pf)^2(u_0) - 2(Pf)(u_0) + u_0 = 0$ then $m(u_0 - J(u_0)) = \sigma(J(u_0), B)$. Moreover, if $J(u_0) \in B$, then J has a fixed point.

Proof:

let $K = Pf$ then $K; B \to B$ is linear nonexpansive $\exists (K)^2(u_0) - 2(K)(u_0) + u_0 = 0$

From linearity of K, we have

$$(K - I)(K - I)(u_0) = 0$$

Let $K(u_0) = u$

$$\Rightarrow (K - I)(u) = 0 \Rightarrow (K - I)(u) = u.$$

$$\Rightarrow K(u_0) = u_0 + u \Rightarrow K^n(u_0) = nu, \forall n \geq 1.$$

Consider $nm(u) = m(K^n(u_0) - u_0)$

$$\leq m(K^n(u_0) - K(0)) + m(u_0)$$

Hence, $m(u) \leq \frac{2m(u_0)}{m}$, $\forall n \geq 1$. As $n \to \infty$, we get $u = 0 \Rightarrow K(u_0) = u_0$. Therefore, $(Pf)(u_0) = u_0 \Rightarrow m(u_0 - J(u_0)) = \sigma(J(u_0), B)$ done.

Open problem

Consider $J: B \to V$, where B is convex set J is midpoint concave (or convex) map if

$$\frac{1}{2} J(x) + \frac{1}{2} J(y) \subseteq J(\frac{x+y}{2}), \forall x, y \in B.$$

$$(or, J(\frac{x+y}{2}) \subseteq \frac{1}{2} J(x) + \frac{1}{2} J(y))$$ respectively. Is there $u_0 \in B \exists m(u_0 - J(u_0)) = \sigma(J(u_0), B)$?

References