Study the correlation between Human Chorionic Gonadotropin Hormone and Some Biochemical Parameters in Iraqi Women with Pregnancy-Induced Hypertension

Saja Muhanad Bayram¹,², Lina A. Salih², Samia. A. Eleiwe³

¹ Department of Medical Laboratory Techniques, Al-Esraa University College, Baghdad, Iraq
² Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
³ Department of Histology, Anatomy, and Embryology, College of Medicine University of Mustansiriyah, Baghdad, Iraq

Abstract

Pregnancy-induced hypertension (PIH) is a major pregnancy complication that causes pregnant women mortality. Here, we had scrutinized the correlation between serum levels of β-hCG and biochemical parameters in PIH. Serum samples were collected from eighty Iraqi women (forty women with pregnancy-induced hypertension as patients group, twenty normotensive pregnant women as a positive control, and twenty normotensive non-pregnant women as a negative control) all groups were diagnosed clinically. All β-hCG hormone level was measured for all studied groups, also serum uric acid, albumin, and total protein levels were measured as biochemical parameters. Data analysis showed that serum level of β-hCG hormone was significant increase (p≤0.05) in PIH in compared to control groups. Also Uric acid level was increased significantly in PIH group in compared with control groups. While Albumin show there was no significant difference in PIH group. Total serum protein level was measured by Bradford total Protein assay all results was in normal value and showed a significant difference in PIH group in comparison to control groups. Our study shows that there is correlation between β-hCG with uric acid and albumin levels in PIH. Serial estimation of serum β-hCG, uric acid, and albumin can be important to use as a marker of disease and also can be used in better early management of established cases that lead to preeclampsia and eclampsia.

Keywords: PIH, β-hCG, uric acid, albumin, total protein, Iraq.

دراسة العلاقة بين هرمون موجهة الغدد التناسمية المشيمائية البشرية وبعض الدلائل الكيموحيوية في النساء العراقيات المصابات بارتفاع ضغط الدم الحملي

سجى مهند بيرم¹ ²، لينا عبد المطمب صالح²، سامية عباس عليوي³

¹ قسم تقنيات التحاليل المرضية، كلية الامراء الجامعة، بغداد، العراق
² قسم علوم الحياة، كلية العلوم، جامعة بغداد، بغداد، العراق
³ قسم الأنسجة والتشريح والاجنة، كلية الطب، الجامعة المستنصرية، بغداد، العراق

الخلاصة

بعد ارتفاع ضغط الدم الحملي (PIH) يعد ارتفاع ضغط الدم الحملي (PIH) في النساء العراقيات المصابات بارتفاع ضغط الدم الحملي (PIH) يترتب عليه العديد من مضاعفات الحمل. هذه الدراسة تهدف إلى دراسة العلاقة بين هرمون موجهة الغدد التناسمية المشيمائية البشرية ودلائل الدم الكيموحيوية في النساء العراقيات المصابات بارتفاع ضغط الدم الحملي (PIH).

*Email: Saja.bayram@yahoo.com
al-Refaei et al. 2017 investigated the incidence of disease typically occurs in pregnancy. The disease causes the transport of various nutrients through the circulatory system. The transport of blood proteins, such as albumin, is crucial for controlling the extracellular fluid distribution. The transport of metals through the circulatory system serves as a triggering factor for mother and fetus life. A tissue that is affected by pregnancies problematic like hypertension is the placenta, which may be considered as early placental vascular damage in pre-eclamptic pregnancies and cause a decreasing of and cause a decreasing of oxygen amount. So, the result is increasing of human chorionic gonadotropin (hCG) hormone production by hyperplastic syncytiotrophoblastic cells. Previous researches had shown a link between β-hCG levels and the progress of hypertension. Protein in serum have a central role in sustain blood balance, so total protein may be raised or reduced because of some physiological and pathological modifications in human body during pregnancy period. The blood serum contain many proteins that differ in origin and functions. The main functions are responding to cases of inflammation, controlling disease, carry out transport, control extracellular fluid distribution and a source of nutrition of the tissues. The two major type of blood proteins are albumin and globulins. Albumin helps to keep the blood from leaking out of blood vessels. It also helps carry medicines & important substances through the blood. While globulins are made in the liver and immune system. Some globulin becomes an end product of the metabolism of purines. Purine metabolism by xanthine oxidase couples the production of uric acid with the generation of superoxide anion (O$_2^-$) and hydrogen peroxide (H$_2$O$_2$). The excess of UA in the human body causes a chronic hyperuricemia. This accumulation could lead to a progress of hypertension, as well as chronic kidney disease, cardiovascular diseases, and metabolic syndrome. Hyperuricemia is a common outcome in pregnancies that suffer from PIH.

The aim of current study is to determine correlation between serum levels of β-hCG and some biochemical parameters in Iraqi women with pregnancy-induced hypertension in compression to normal pregnant and non-pregnant woman.

Materials and Methods

Participants

Eighty participants women involved in this study during their attendance at Fatima al-Zahraa hospital in Baghdad through the period from October 2017 to January 2018. The selection of women
were as follows: forty women with pregnancy-induced hypertension as a patient group, twenty normal pregnant women as a positive control, and twenty non-pregnant women as a negative control.

Samples Collection

Five milliliters (ml) of venous blood had been collected from pregnancy-induced hypertension, normotensive pregnant, and non-pregnant women using a clean plain tube and allowable to clot at 37°C for 10 minutes. Then it has been centrifuged for 5 minutes at 2500 rpm until serum separated. Serum was reserved at -20°C until used.

- **Determination the levels of β-hCG in serum**

 By using an Electrochemiluminescence immunoassay (ECLIA) kit cobas®e411, serum levels of β-hCG were measured in women with PIH in addition to normotensive pregnant and non-pregnant women, following the manufacturer’s instructions. Ten μL of the sample was incubated with both a biotinylated, monoclonal hCG-specific antibody and a ruthenylated, monoclonal hCG-specific antibody to form a sandwich complex. Streptavidin-coated microparticles were added to the reaction mixture and the complex binds to the solid phase via biotin–streptavidin interactions. The reaction mixture was transferred to a measuring cell and the microparticles are magnetically captured onto the surface of an electrode; unbound sample was washed away before a chemiluminescent reaction was induced by applying a voltage to the electrode. Chemiluminescence was measured by a photomultiplier and the concentration of β-hCG within the sample is calculated using a calibration curve (Roche, Germany).

Biochemical parameters determination in serum

- **Serum uric acid determination**

 The mixture of sample and reagent was incubated at 37°C for 5 min. The strength of the red color formed was relational to the uric acid concentration in the sample, and the colored complex had been measured at 520nm by spectrophotometry (Spinreact, Spain).

- **Serum albumin determination**

 Sample and reagent were mixed and left for 1 min at room temperature then the absorbance of colored complex that formed when Albumin in the sample reacts with bromocresol green in acid medium determined at 630nm by spectrophotometry (BioSystems, Spain).

- **Serum total protein determination (Bradford assay)**

 The Bradford assay is a favorite colorimetric assay for measuring protein it based on an absorbance shift of the dye Coomassie Brilliant Blue [10].

Statistical Analysis

The program of Statistical Analysis System (SAS) was used to analysis the different factors in study parameters. The least significant difference LSD test (ANOVA) was used for significant compare between means and Estimatation of the correlation coefficient between parameters in this study (SAS. 2012).

Results

The analysis of data showed a highly significant difference (P<0.01) between PIH group and other positive control and negative control groups in uric acid concentration, the mean of uric acid was (6.41 ± 0.20, 4.12 ± 0.28 and 4.10 ± 0.26 respectively) and it was shown in (Table-1).

Total serum protein level was measured by Bradford total Protein assay all results was in normal value there was significant different between groups the Mean ± SE (5.67±0.12) in PIH group in comparison to normal pregnant and non-pregnant women (5.13 ± 0.13, and 5.93 ± 0.19) respectively as shown in (Table-1).

Other finding in this study showed that there was no significant differences of albumin in pregnant women with PIH and normal positive control (3.33 ± 0.05 and 3.17 ± 0.10), respectively. Whereas the negative control group showed significant differences comparing to other groups (3.90 ± 0.08) as shown in Table-1
Table 1-Compare between PIH and control groups in the serum uric acid, albumin and total protein in the Iraq women.

<table>
<thead>
<tr>
<th>Group</th>
<th>Uric acid (mg/dl)</th>
<th>total Protein (mg)</th>
<th>Albumin (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIH</td>
<td>6.41 ± 0.20 a</td>
<td>5.76 ± 0.12 a</td>
<td>3.33 ± 0.05 b</td>
</tr>
<tr>
<td>Control +ve</td>
<td>4.12 ± 0.28 b</td>
<td>5.13 ± 0.13 b</td>
<td>3.17 ± 0.10 b</td>
</tr>
<tr>
<td>Control -ve</td>
<td>4.10 ± 0.26 b</td>
<td>5.93 ± 0.19 a</td>
<td>3.90 ± 0.08 a</td>
</tr>
<tr>
<td>LSD value</td>
<td>0.722 **</td>
<td>0.433 **</td>
<td>0.209 **</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

** (P<0.01): Means having with the different letters in same column differed significantly.

Uric acid is a simple supportive parameter used to confirm the diagnosis of preeclampsia to one in which we appreciate its independent link with adverse outcomes [11]. Bahediya proved that there was no significant change in serum uric acid of normal pregnant women, compared to non-pregnant women, Boyle also support this proof [12, 13]. The endothelial dysfunction and vasospasm in PIH may eventually leads to widespread ischemic injury and oxidative stress, consequently promoting a uric acid production. Hyperuricemia may then have partial effects on placental and maternal vascular dysfunction [14]. Hyperuricemia is a communal result in PIH women. Disease severity and perinatal mortality had described to correlate with Hyperuricemia [8]. Recently, augmented oxidative stress and the formation of reactive oxygen species have been proposed as other sources of the elevated serum acid levels seen in preeclampsia and cause the toxemic cases [15].

Total Proteins are normally stopped from transitory into urine by both the tubules and the glomeruli. In non-pregnant women The abnormal excretion of total protein is more than 150 mg daily [16]. In normal pregnancy, increasing urinary protein excretion is detected due to a mixture of amplified permeability of the glomerular basement membrane and increased glomerular filtration rate. Also, in PIH highly molecular weight protein was lost due to endothelial dysfunction and vasospasm [17].

Serum albumin was slightly elevated in PIH than normal pregnant and this is in accordance with the finding of previous study done by Ephraim, et al., 2018 who recorded a high urinary protein level and decreased serum albumin concentration among preeclamptic women compared to the healthy pregnant women. This could be due to the dangerous effect of human albumin serum levels on vascular oxidative stress in some diseases of human[18].

Determination of serum levels of β-hCG

The obtained result showed that maternal serum level of β-hCG in PIH women was significantly higher (P<0.05), (9601.43 ± 78.71 mIU/ml) than positive and negative control groups (4344.50 ± 423.93 mIU/ml and 8.83 ± 4.64 mIU/ml respectively) as shown in Table-2.

Table 2-Compare between PIH and control groups in the serum β-hCG hormone concentration.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean ± SE of β-hCG (mIU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIH</td>
<td>9601.43 ± 78.71 a</td>
</tr>
<tr>
<td>Control +ve</td>
<td>4344.50 ± 423.93 b</td>
</tr>
<tr>
<td>Control -ve</td>
<td>8.83 ± 4.64 c</td>
</tr>
<tr>
<td>LSD value</td>
<td>578.49 **</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

** (P<0.01). Means having with the different letters in same column differed significantly.
Many studies also has been demonstrated that maternal serum concentrations of beta human chorionic gonadotropin (β-hCG) were significantly rising in the PIH women [19-21]. Although the regulation mechanism of gestational hCG remains largely unknown, it is mostly established that syncytiotrophoblast is secreted β-hCG. Also, β-hCG manufacture has been shown to rise when normal placental villi in organ culture were maintained under hypoxic condition [22].

It is well recognized that hCG can act straight on arterial vascular tension and on trophoblast function including syncytiotrophoblast differentiation and secretion and spiral arteries invasion and transformation [23]. Increasing of hCG secretion is supposed to reflect early endothelial dysfunction and/or placental damage [24]. Using hCG as an indicator of cytotrophoblast differentiation, this results are reliable with the results of Gurbuz et al., which showed that serum levels of hCG increased according to the severity of preeclampsia [25].

Correlation coefficient between β-hCG and biochemical parameters

Statistical analysis showed that there was a significant positive correlation between β-hCG hormone with Uric acid r=0.60 as well as a significant negative correlation between β-hCG hormone with Albumin r=-0.40. While total protein showed no correlation with β-hCG hormone r=-0.01, (Table 3).

Table 3-Correlation coefficient between β-hCG and biochemical parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>r</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uric acid</td>
<td>0.60 **</td>
<td>0.0002</td>
</tr>
<tr>
<td>Albumin</td>
<td>-0.40 **</td>
<td>0.0001</td>
</tr>
<tr>
<td>Total protein</td>
<td>-0.01</td>
<td>0.832</td>
</tr>
</tbody>
</table>

(P<0.01), NS: Non-Significant

Analysis of the data of this work also found a positive correlation between β-hCG and uric acid as shown in (Table-3). Uric acid mechanism can mediated maternal vasculature damage which cause unsuccessful placental bed formation because of interference in trophoblast invasion. This consequently leads to ischemia-reperfusion injury to the placenta and oxidative stress which lead to increase secretion of β-hCG [26]. Uric acid and β-hCG levels in pregnancy help in early recognition and better organization of patients who are at risk of pregnancy-induced hypertension [27].

The result also showed a negative correlation between β-hCG and albumin, as shown in Table-3. Human serum albumin corresponds inversely to oxidative stress. Human serum albumin seems to decrease superoxide levels via NADPH oxidase and superoxide scavenging inhibition independently in the human. This explain that when human serum albumin increase it work as an antioxidant in the endothelial function. This antioxidant effect on oxidative stress has a negative correlation which lead to decrease the secretions of β-hCG in PIH women [7].

Conclusion

Our study showed that there is correlation between β-hCG with uric acid and albumin levels in PIH. Serial estimation of serum β-hCG uric acid and albumin can be important to use as markers of disease and also can be used in better early management of established cases that lead to preeclampsia and eclampsia.

References

22. Nigussie, A., Serum Level Of B-hCG In Normotensive And Pre-Eclamptic Pregnant Women Attending Antenatal Care At Tikur Anbessa Specialized Hospital, in Department Of Physiology, School Of Medicine. . 2014, Addis Ababa University.