Prevalence of Metabolic Syndrome in Angiographically Confirmed Coronary Artery Disease

Alan Mobarek Mahmood, Mousa Haji Ahmed, Jamal Bashir Mohammad
Cardiac Center, Azadi Teaching Hospital, 1Department of Internal Medicine, College of Medicine, University of Duhok, Duhok, Kurdistan, Iraq

Abstract

Background: Coronary artery disease (CAD) is one of the most common causes of death in the developed world with the high prevalence of cardiac risk factors and associated morbidity. These risk factors were mostly contributed in the metabolic syndrome. Objective: The study aimed to determine the prevalence of metabolic syndrome among patients with angiographically documented CAD and its relation with the severity of CAD. Materials and Methods: In the current cross-sectional study, a total of 320 patients aged 18 years and older of both genders and diagnosed with CAD by medical and clinical examinations and angiography findings were included in the study. Patients with normal angiographic or nonsignificant coronary stenosis and those with acute coronary syndrome were excluded from the study. Results: The prevalence of metabolic syndrome in patients diagnosed with CADs was 68.4% in this study. The numbers and severity of coronary arteries involved were importantly increased through increasing the numbers of the components of the metabolic syndrome that the patient have it. The majority of the patients with right coronary artery (67.6%), circumflex artery (63.2%), left anterior descending (66.7%), and multivessel (69.8%) had metabolic syndrome with no significant difference (P = 0.913). Moreover, the most of the patients with one vessel (66.4%), two vessels (68.2%), three vessels (72.2%), and four vessels (66.7%) were metabolic syndrome (P = 0.846). Between the individual components, diabetes mellitus (DM) was the most significant risk factor accounts for the number and severity of the CAD in all CAD patients. Conclusions: The prevalence of metabolic syndrome is high among patients with angiographically documented CAD. Patients having metabolic syndrome have more severe and more complex CAD.

Keywords: Comorbidity, coronary artery disease, metabolic syndrome

Introduction
The metabolic syndrome (syndrome X, insulin resistance syndrome) consists of a constellation of metabolic abnormalities that confer increased risk of cardiovascular disease (CVD) and diabetes mellitus (DM). The term “metabolic syndrome” was first used in the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) to describe the co-occurrence of obesity, dyslipidemia, hypertension (HT), and abnormal glucose metabolism (Expert Panel on Detection and Treatment of High Blood Cholesterol in 2001).[1]

However, the association of metabolic disorders and cardiovascular risk factors had been recognized for many decades.[2,3] In his American Diabetes Association Banting lecture in 1988, Reaven used the term “syndrome X” to describe the relationship of insulin resistance, HT, type 2 diabetes (T2D), and CVDs.[4] Other investigators have referred to the clustering of metabolic and cardiovascular risk factors as the “insulin resistance syndrome.”[5]

Coronary artery disease (CAD) is one of the most common causes of death in the developed world,[6] the high prevalence of cardiac risk factors and associated morbidity have been reported in Iraqi adult population,[7] these risk factors were mostly contributed in the metabolic syndrome, and it became a growing health problem in Iraq due to alteration in lifestyle, low physical activity, the epidemic of obesity and insulin resistance. Although in Iraq, little studies were found to identify the prevalence of the metabolic syndrome in patients with CAD.

Access this article online
Quick Response Code: www.medjbabylon.org
DOI: 10.4103/MJBL.MJBL_101_18

Address for correspondence: Dr. Alan Mobarek Mahmood, Azadi Teaching Hospital, Duhok, Kurdistan, Iraq.
E-mail: alandusky2017@gmail.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

having CAD, and the majority of them accomplished among inpatients presenting with ACS before attending angiography catheterization, meanwhile they were an unconfirmed CAD.

Worldwide the prevalence of metabolic syndrome varies in part reflecting the age, ethnicity of their population and the diagnostic criteria applied, in general increases with age. The highest recorded prevalence was among native Americans 60% of women and 45% in men ages 45–59 years meeting criteria of the NCEP ATP III were as in the US, is less common in African–American men and more in Mexico–American woman based on data from the National Health and Nutrition Examination Survey 2003–2006. In France, studies of a cohort of 30–60 years have shown <10% prevalence for each sex although 17.5% of people 60–64 years of age were affected.[8]

In a recent 2016 Iranian study among 200 CAD patients, the prevalence of metabolic syndrome was 49.5% women and 40% men.[1] In Turkey reported a prevalence of 33.9%, The population for this analysis were 2108 men and 2151 women.[9,10] In Tunisia, metabolic syndrome prevalence was 45.5% based on the IDF criteria and 24.3% according to the (ATP III) definition which included 3435 adults.[11] In Palestinians, in East Jerusalem, metabolic syndrome was found in 115 (33.6).[12] In Northern Jordan, the prevalence of metabolic syndrome was 36.3%.[13]

The aim of this study was to determine the prevalence of metabolic syndrome among patients with angiographically documented CAD and its relation with the severity of CAD.

Materials and Methods

The cross-sectional prospective study enrolled all patients whom underwent elective coronary angiography in Azadi Heart Center/Duhok, Iraq, between September 2017 and May 2018. The patient’s ages were between 18 years and older of both genders, diagnosed with CAD by medical and clinical examinations and angiography findings. Patients with normal angiographic or nonsignificant coronary stenosis and those with acute coronary syndrome were excluded from the study.

Metabolic syndrome was diagnosed according to the ATP III criteria, including three or more of the following metabolic abnormalities: abdominal obesity (waist circumference [WC] >102 cm in men and >88 cm in women), high blood pressure (≥130 mmHg systolic or ≥85 mmHg diastolic), hypertriglyceridemia (>150 mg/dl, 1.7 mmol/L), low high density lipoprotein cholesterol (HDL-C) (<40 mg/dl, 1.03 mmol/L) in men and (<50 mg/dl, 1.29 mmol/L) in women, high fasting glucose (fasting serum glucose (>110 mg/dl).[14]

Diagnosis of patients with CAD was based on the result of coronary angiography, in which >50% stenosis regarded as significant vessel disease (VD), while those below this rate had been excluded from this study.[14–16]

Statistical methods

The descriptive purposes of the study, including the prevalence of metabolic syndrome in CAD patients were determined in frequency and percentage. The continuous normally distributed characteristics of patients were determined in mean and standard deviation (SD). The difference of metabolic syndrome among angiography findings was examined in Chi-squared and Fishers’ exact test. The predictors of angiography findings were examined in univariate analysis of variance. The null hypothesis was rejected in \(P < 0.05 \). The statistical calculations were performed using Statistical Package for the Social Sciences version 24 (SPSS, IBM Company, Chicago, USA).

Results

The demographic and clinical characteristics of the 320 CAD patients (180 males and 140 females; aged 32–85 years, the mean age 57.74, SD: 9.96) with and without metabolic syndrome are presented in Table 1; of these, 68.4% had metabolic syndrome; (56.3% males vs. 52.1% females) \(P < 0.05 \).

The majority of patients had abnormal high density lipid cholesterol (HDL-C), Triglyceride (TG), Waist circumference (WC), and were known diabetes mellitus DM or impair fasting blood sugars (FBS) and hypertension (HT). For HDL-C (81.7% males and 73.6% females), for TG (78.50%), WC; (77.9% females and 49.4 males), HT; (56.3% males and 43.8% females) while DM; 52% [Table 1].

Again the mean and percentages of WC, BMI, BP, FBS, TG, and low-density lipoprotein cholesterol \((P < 0.0001) \) in CAD patients with metabolic Syndrome were significantly higher, and HDL-C levels \((P < 0.0001) \) were significantly lower than in those without Metabolic Syndrome. Low serum HDL \((36.28 \pm 7.76 \text{ vs. } 47.23 \pm 9.64, \ P < 0.001) \), high serum TG \((227.89 \pm 71.57 \text{ vs. } 140.22 \pm 56.36, \ P < 0.0001) \), HT; 187 (85.8%) versus 25 (24.8%), \(P(<0.0001), \) DM; 153 (70.2%) versus 15 (14.9%), \(P(<0.0001), \) and they were the most significant risk factors for CAD in metabolic patients versus nonmetabolic ones [Table 2 and Figure 1].

The majority of the patients with right coronary artery (RCA) (67.6%), circumflex artery (CX) (63.2%), left anterior descending (LAD) (66.7%), and multivessel (69.8%) had metabolic syndrome with no significant difference \((P = 0.913) \). Moreover, the most of the patients with 1 vessel (66.4%), two vessels (68.2%), three vessels (72.2%), and four vessels (66.7%) were metabolic syndrome \((P = 0.846) \) [Table 3 and Figure 2].

Table 1: Prevalence of metabolic syndrome in coronary artery disease patients

<table>
<thead>
<tr>
<th>Patients’ characteristics</th>
<th>CAD ((n = 320))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic syndrome</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>219 (68.4)</td>
</tr>
<tr>
<td>No</td>
<td>101 (31.6)</td>
</tr>
</tbody>
</table>

CAD: Coronary artery disease
patients.

Between the individual components, DM was the most significant risk factor accounts for the number and severity of the CAD in all CAD patients as follow: 2VD; (63 [37.5%] vs. 44 [29.1%], 3VD; (48 [28.6%] vs. 31 [20.5%]), (P = 0.045), multi-VD (MVD); (114 [67.9%] vs. 78 [51.7%]), (P = 0.029) as compression between diabetic and non-diabetic patients, respectively [Tables 4-6].

Discussion

In this study, the prevalence of metabolic syndrome in angiographically confirmed CAD patients was 68.4% which is similar to studies in other regions of the world like in study by Achari et al., in which prevalence was 64.2% in Indian population,[17] while in Iranian adults the prevalence of metabolic syndrome among CAD patients was 49.5%.[18] Furthermore, in Pakistani patients, the prevalence was much more less 37%.[19]

Hence, the prevalence of Met S varies widely, depending on the type of study (hospital-based vs. population-based study), baseline characteristics of the study population (e.g., ethnicity, age, and history of ACS) and criteria used to define Met S. Furthermore, these differences could be due to lifestyle-related factors such as unhealthy food habits, urbanization, economic growth, physical inactivity and increased stress, high percentage of body fat, and abdominal obesity.

The individual components of the metabolic syndrome whether alone or in combination with risk factors have variable effects on CAD risk with some of them having the highest risk for CAD, however, each component acts as an independent risk factor for CAD, but all of them interact synergistically, and thus lead to increased risk of CAD.[6]

The prevalence of metabolic syndrome and its individual components with various rates in CAD patients has been reported in earlier studies, the abdominal obesity, dyslipidemia, HT, and hyperglycemia most often were reported as the metabolic syndrome components, and the severity of CAD increased with the number of components.[20-23]

In Shanghai, a study performed and showed that among individual components of metabolic syndrome, low HDL,
Mahmood, et al.: Metabolic syndrome in angiographically CAD

High FBG, and high BP had the highest OR for coronary heart disease, these three parameters had significant increases in number of disease vessels.[24]

In Korean population, a study showed that metabolic syndrome was independently linked to coronary parameters including obstructive plaque and coronary artery calcium score in the nondiabetic CAD patients, low HDL-C levels were markedly associated with CAD among the individual components of metabolic syndrome in these patients.[25,26]

However, there were no exact prevalence of metabolic syndrome in Iraq and or Kurdistan region, have been done before, and exactly in angiographic profile CAD patients, our results were near the results done in the Middle East countries.[27,28]

Unfortunately, in our study, the premature CAD was obvious in which the mean age were (57.77 ± 9.23) and (57.70 ± 11.44) for metabolic and nonmetabolic patients respectively, and the females were older than males by (4 years) [Table 2].

Concerning the gender, in our study, the prevalence of metabolic syndrome in female patients who present with CAD was higher when compared with overall cohort studies,[28-30] had shown a higher prevalence of metabolic syndrome in female presenting with ACS.

Among the individual components of metabolic syndrome, nearly all components, DM, HT, hypertriglyceridemia (TG), and HDL-C, central obesity (WC), were significantly abnormal (\(P < 0.0001\)), as compared with nonmetabolic syndrome patients. Females were more diabetic, hypertensive, obese, hypertriglyceridemia, less or passive smokers, and older. While males were more smokers, thinner, and younger in ages due to cultural habits.

Nonmetabolic patients were mostly males, more smokers, and mostly were diabetic, hypertensive, and had low (HDL-C), and had a family history of CAD.

Regarding the association of high-level glucose, some studies have shown markedly associated with CAD. A study reported that the prevalence of CHD in diabetic patients with metabolic syndrome was significantly higher than in those without metabolic syndrome.[31]

The severity, the pattern of the lesion and characteristics type of coronary vessel involved in both metabolic and nonmetabolic syndrome patients, were studied, and it revealed that MVD; (2VD), (3VD), were more prevalent in metabolic syndrome group than those without metabolic syndrome (57.4% vs. 42.6%).

Similar observations had been reported by other studies. Kip \textit{et al.}[32] reported statistically significant prevalence of severe CAD in patients with Met S (47% as compared to 25% in patients without Met S). Yavuz \textit{et al.}[33] reported significantly higher number of patients with Met S having severe CAD as compared to patients without Met S (91% vs. 62%)[34] in a multicenter study also reported significantly higher prevalence of severe CAD in European American and African American patients having Met S as compared to patients without Met S (71% and 57% vs. 29% and 43%).

![Figure 2: Prevalence of metabolic syndrome in angiography findings (vessel number)](image)

Table 3: Angiography findings of coronary artery disease patients

<table>
<thead>
<tr>
<th>Angiography findings of CAD patients ((n=320))</th>
<th>Frequency distribution</th>
<th>(P) (two-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetS ((n=219))</td>
<td>Non-MetS ((n=101))</td>
<td></td>
</tr>
<tr>
<td>RCA</td>
<td>25 (11.4)</td>
<td>12 (11.9)</td>
</tr>
<tr>
<td>CX</td>
<td>12 (5.5)</td>
<td>7 (6.9)</td>
</tr>
<tr>
<td>LAD</td>
<td>48 (21.9)</td>
<td>24 (23.8)</td>
</tr>
<tr>
<td>Multivessel (69.8%)</td>
<td>134 (61.2)</td>
<td>58 (57.4)</td>
</tr>
<tr>
<td>Vessel numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 vessel (66.4%)</td>
<td>85 (38.8)</td>
<td>43 (42.6)</td>
</tr>
<tr>
<td>2 vessels (68.2%)</td>
<td>73 (33.3)</td>
<td>34 (33.7)</td>
</tr>
<tr>
<td>3 vessels (72.2%)</td>
<td>57 (26.0)</td>
<td>22 (21.8)</td>
</tr>
<tr>
<td>4 vessels (66.7%)</td>
<td>4 (1.8)</td>
<td>2 (2.0)</td>
</tr>
</tbody>
</table>

RCA: Right coronary artery, CX: Circumflex artery, LAD: Left anterior descending artery, CAD: Coronary artery disease, MetS: Metabolic syndrome

Table 4: Severity of coronary artery disease according to components of metabolic syndrome

<table>
<thead>
<tr>
<th>Number of metabolic components</th>
<th>Single vessel disease</th>
<th>Double vessel disease</th>
<th>Triple vessel disease</th>
<th>Four vessel disease</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2 (28.6)</td>
<td>2 (28.6)</td>
<td>3 (42.9)</td>
<td>0 (0.0)</td>
<td>0.670**</td>
</tr>
<tr>
<td>1</td>
<td>10 (40.0)</td>
<td>9 (36.0)</td>
<td>5 (20.0)</td>
<td>1 (4.0)</td>
<td>0.814*</td>
</tr>
<tr>
<td>2</td>
<td>4 (14.5)</td>
<td>14 (54.1)</td>
<td>9 (22.0)</td>
<td>1 (2.4)</td>
<td>0.968*</td>
</tr>
<tr>
<td>3</td>
<td>33 (49.3)</td>
<td>16 (23.9)</td>
<td>18 (26.9)</td>
<td>0 (0.0)</td>
<td>0.130**</td>
</tr>
<tr>
<td>4</td>
<td>49 (37.7)</td>
<td>49 (37.7)</td>
<td>30 (23.1)</td>
<td>2 (1.5)</td>
<td>0.617**</td>
</tr>
<tr>
<td>5</td>
<td>17 (34.0)</td>
<td>17 (34.0)</td>
<td>14 (28.0)</td>
<td>2 (4.0)</td>
<td>0.526*</td>
</tr>
</tbody>
</table>

*Chi-square and **Fisher’s exact tests were performed for statistical analyses
There are no conflicts of interest.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

