LINEAR CODE THROUGH POLYNOMIAL MODULO Z_n

MAKARIM ABDULWAHIDE
DEPT. OF INFORMATION SYSTEMS -COLLEGE OF COMPUTERS -UNIVESITY OF AL-ANBAR

Abstract :-
A polynomial \(p(x) = a_0 + a_1 x + \ldots + a_d x^d \) is said to be a permutation polynomial over a finite ring \(R \) if \(P \) permute the elements of \(R \). where \(R \) is the ring \((Z_n, +, \cdot) \).
It is known that mutually orthogonal Latin of order \(n \), where \(n \) is the element in \(Z_n \) generate \(A, [2] \) - error correcting code with \(n^2 \) code words. And we found no a pair of polynomial defining a pair of orthogonal Latin square modulo \(Z_n \) where \(n = 2^w \) generate a linear code.

Keywords: Linear code, polynomial, modulo \(Z_n \)

Introduction :-
A polynomial \(p(x) = a_0 + a_1 x + \ldots + a_d x^d \) with integral coefficient is a permutation polynomial modulo \(n \) if and only if \(a_1 \) is odd and \((a_2 + a_4 + a_6 + \ldots)\) is even and \((a_3 + a_5 + a_7 + \ldots)\) is even, and this condition satisfies where \(n = 2^w \), \(w \geq 2 \) and this condition depend only on the parity of the coefficient. It is easy to state necessary and sufficient condition for polynomial to represent a Latin square of order \(n = 2^w \).
Latin square are dealt with extensively in Denes and Keed well [1974]. Two \(n \times n \) Latin squares \(A = a_{ij} \) and \(B = b_{ij} \) are orthogonal if Latin square:
\[
\{(a_{ij}, b_{ij}) : i, j \in \{0, 1, 2, \ldots, n-1\}\} = n^2
\]
As set of \(t > 0 \) Latin squares are pairwise mutually orthogonal if every pair of Latin squares in the set are orthogonal. A code \(C \) is Linear if the addition of any two code words is another codeword. A \(n \times n \) matrix \(L = L^\perp \) is a Latin square that generate a linear code modulo \(n \) iff \(L \) is of the form \(L^\perp = (i^{\beta} + j^{\alpha}) \mod n \) for some integer \(\alpha, \beta \) satisfying:
\[
1- 0 < \alpha, \beta < n
\]
\[
2- \gcd (\alpha, n) = \gcd (\beta, n) = 1
\]
This condition characterize every Latin square that generate a linear code modulo \(n \), and if \(n \) is even or a power of 2 are not very useful in terms of generating linear codes modulo \(n \). characterizing permutation polynomial:

Theorem (1) : Let \(p(x) = a_0 + a_1 x + \ldots + a_d x^d \) be a polynomial with integral coefficient and its a permutation polynomial modulo \(Z_n \) where \(n = 2^w \) where \(w > 0 \), and
Let \(m = 2^{w-1} = \frac{n}{2} \). Then \(p(x) \) is permutation polynomial modulo \(m \).

Proof: Clearly, \(p(x+m) = p(x)(\text{mod } m) \) for any \(x \).

Assume that \(p(x) \) is permutation polynomial modulo \(n \) if \(p \) is not a permutation polynomial modulo \(m \), such that \(p(x) = p(x') = y \) (mod \(m \)), for some \(y \).

This collision means there are four values \(\{ x, x + m, x', x' + m \} \) modulo \(n \) that \(p \) maps to a value congruent to \(y \) modulo \(m \).

But there can only be two such values if \(p \) is a permutation polynomial, since there are only two values in \(\mathbb{Z}_n \) congruent to \(y \) modulo \(m \).

Lemma: Let \(p(x) = a_0 + a_1 x + \ldots + a_d x^d \) be polynomial with integral coefficient, and let \(n = 2m \), if \(p(x) \) is a permutation polynomial modulo \(n \), then \(p(x + m) = p(x) + m \) (mod \(n \)) for all \(x \in \mathbb{Z}_n \).

Proof: This follows directly from theorem (1), since the only two values modulo \(n \) that are congruent modulo \(m \) to \(p(x) \) are \(x \) and \(p(x) + m \).

Example: The following are permutation polynomial modulo \(z^n \) where \(n = 2^w \) where \(w > 1 \):

- \(x(a + bx) \) where \(a \) is odd and \(b \) is even.
- \(x + x^2 + x^4 \).

1+ \(x + x^2 + \ldots + x^d \), where \(d = 1 \) (mod 4)

Theorem (2): A polynomial

\[
p(x, y) = \sum_{i,j} a_{ij} x^i y^j
\]

represents a Latin square modulo \(n = 2^w \) where \(w \geq 2 \), iff

the four polynomials \(p(x,0), p(x,1), p(0,y) \) and \(p(1,y) \), and are all permutation polynomial modulo \(n \).

Example: Second-degree polynomial representing a Latin square modulo \(n = 2^w \)

\(2xy + x + y = x \). (2y+1)+y = y. (2x + 1) + x.

A method of constructing an error-correcting code of distance \(t+1 \) with \(n^2 \) code words of length \(t+2 \) when given \(t \) mutually orthogonal Latin square:

Given \(t \) mutually orthogonal Latin square

\(L_1, L_2, \ldots, L_t \), the code is the set of all code words of the form \((i,j, l_1, l_2, \ldots, l_t) \) where \(l_i \) is the I-\(j \)-th entry of \(L_i \), \(l_2 \) is the I-\(j \)-th entry of \(L_2 \) and \(l_t \) is the I-\(j \)-entry of \(L_t \) where \(1 \leq k \leq t \).

The following example using two orthogonal Latin square of order 3, with our notation the two Latin square are:

\[
\begin{bmatrix}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{bmatrix}
\]

The code constructed using these two is \{0,0,0,0), (0,1,1,1), (0,2,2,2), (1,0,1,2), (1,1,2,0), (1,2,0,1), (2,0,2,1), (2,2,1,0)\}

A noteworthy feature of this code is that it is also a linear code when addition and multiplication are defined modulo \(n \).

If \(C \) is a linear code we say that these Latin square generate a linear code modulo \(n \), where \(n \) is the order of Latin squares.

The following theorem provides necessary and sufficient conditions for two Latin square that generate linear codes modulo \(n \) by themselves to be orthogonal. Two such orthogonal Latin square when taken together generate another linear code modulo \(n \).

Theorem (3):

let \(A = (a_0, a_1, \alpha_1, \beta_1) \) and

\(B = (b_0, b_1, \alpha_2, \beta_2) \). then \(A \) and \(B \) are orthogonal iff

\[\gcd (\beta_1 \alpha_1, \beta_2 \alpha_2, n) = 1\]

Proof: Assume that \(A \) and \(B \) are orthogonal.

corresponding entries of \(A \) and \(B \) are equal : \((g,h) = (a_0, a_1, b_0, b_1) = (a_0, a_1, b_0, b_1) \)
Then, by (let $A = (\alpha, \gamma, \beta)$ and let g be some integer in the range $0 \leq g < n$.
then g occurs in the i-th row of A at the
position $a_{i,g^2g^{-1}}$ (**) , we have
\begin{align*}
 j_1 &= g \beta_1 \alpha_1 ^{-1} - i_1 \beta_1 \alpha_1 ^{-1} = h \alpha_2 ^{-1} - \\
 i_1 \beta_2 \alpha_2 ^{-1} &= j_i \quad \ldots \ldots \quad (1) \\
 j_2 &= g \alpha_1 ^{-1} - i_2 \beta_1 \alpha_1 ^{-1} = h \alpha_2 ^{-1} - \\
 i_2 \beta_2 \alpha_2 ^{-1} &= j^2 \quad \ldots \ldots \quad (2)
\end{align*}
subtracting (1) from (2) yields
\begin{align*}
 i_1 \beta_1 \alpha_1 ^{-1} - i_2 \beta_1 \alpha_1 ^{-1} &= \Rightarrow i_1 \beta_1 \alpha_1 ^{-1} - i_2 \beta_1 \alpha_1 ^{-1} \\
 i_1 \beta_2 \alpha_2 ^{-1} + i_2 \beta_2 \alpha_2 ^{-1} &= 0 \\
 \Rightarrow & (\beta_1 \alpha_1 ^{-1} - \beta_2 \alpha_2 ^{-1}) = 0
\end{align*}
We have that $i_1 = i_2$, since
\[
 \gcd (\beta_1 \alpha_1 ^{-1} - \beta_2 \alpha_2 ^{-1}, n) = 1,
\]
comparing (1) and (2)
\[
 \text{We see that } j_1 = j_2.
\]
Now, assume
\[
 \gcd (\beta_1 \alpha_1 ^{-1} - \beta_2 \alpha_2 ^{-1}, n) > 1,\text{ then}
\]
for some integer k, $0 < k < n$
We have that $k(\beta_1 \alpha_1 ^{-1} - \beta_2 \alpha_2 ^{-1}) = 0$
, from (**) , 0 occurs in the k-th row in A
at $-k \beta_1 \alpha_1 ^{-1}$, and in B at $-k \beta_2 \alpha_2 ^{-1}$
, but $k(\beta_1 \alpha_1 ^{-1} - \beta_2 \alpha_2 ^{-1}) = 0 \Rightarrow k \beta_2 \alpha_2 ^{-1} = k \beta_1 \alpha_1 ^{-1} \\
 \Rightarrow -k \beta_2 \alpha_2 ^{-1} = -k \beta_1 \alpha_1 ^{-1}
\]
This means that the pair $(0,0)$ occurs twice among corresponding entries from A and B are not orthogonal .

Lemma : Let $A= (\alpha, \gamma, \beta)$ and $B= (\beta, \gamma, \beta)$ then
\begin{enumerate}
 (1) if $\alpha_1 = \beta_1$ then A and B are
 orthogonal only if $\alpha_2 \neq \beta_2$.
 (2) if $\alpha_1 = \beta_1$ then A and B are
 orthogonal iff $\gcd (\alpha_2 - \beta_2, n) = 1$.
\end{enumerate}
(3) if $\alpha_1 = \alpha_2$ then A and B are
orthogonal iff $\gcd (\beta_2 - \beta_1, n) = 1$.

(4) if $\alpha_1 = \beta_1 \neq \beta_2$ then A and B are
orthogonal iff $\gcd (\beta_2 - \alpha_1, n) = 1$.

It is of interest to know how many mutually orthogonal Latin square of some n
exist that together generate a linear code modulo n.

The following theorem gives an upper bound for this number .

Theorem (4) : suppose that the prime
factorization of n is $n = p_1 \ p_2 \ldots p^h$, such
that $p_1 \leq p_2 \ldots \leq p^h$ and $p_1 \ p^2 \ldots p^h$
are prime . then there are at most $p_1 - 1$
mutually orthogonal Latin square of order n that generate a linear code modulo n .

proof : suppose that there exist a set of
more than $p_1 - 1$ mutually orthogonal
Latin square of order n that generate a linear code modulo n .

Fix one of the Latin square in S , say
$A = (\alpha, \gamma, \beta)$.
We have
\[
 \text{consider the set of difference}:
\]
\[
 D = \{(\beta_1 \alpha_1 ^{-1} - \beta_2 \alpha_2 ^{-1}, n) \} \\
 (1^m, \alpha m, \beta m) \in (S - \{A\})(\mod p^1)
\]
Suppose that there exist two Latin square
$B=(\beta, \gamma, \beta_2)$ and $C= (\gamma, \alpha_3, \beta_3)$
In $S - \{A\}$ such that $\beta_1 \alpha_1 ^{-1} \beta_2 \alpha_2 ^{-1}$
$\equiv \beta_1 \alpha_1 ^{-1} \beta_2 \alpha_2 ^{-1} \equiv 0 \ (\mod p^1)$
This implies that $\beta_2 \alpha_2 ^{-1} \beta_3 \alpha_3 ^{-1}$
$\equiv 0 \ (\mod p^1)$. however by theorem (3)
We have B and C are not orthogonal
because $\gcd (\beta_2 \alpha_2 ^{-1} \beta_3 \alpha_3 ^{-1}, n) \neq 1$, a contradiction . thus , we have that
each Latin square in $S - \{A\}$ contribute a distinct element to D.

This means that there are exactly $p_1 - 1$
elements in $S - \{A\}$ and that $D=\{1,2, p_1 - 1\}$
There for $\beta_1 \alpha_1 ^{-1} \mod p_1 \in D$. So for some Latin square $K=(1,\gamma, \alpha_3, \beta)$ we
have that \(\beta_1 \alpha_1^{-1} - \beta_k \alpha_k^{-1} \equiv \beta_1 \alpha_1^{-1} \pmod{p^1} \).

However, this implies that \(\beta_k \alpha_k^{-1} \equiv 0 \pmod{p^1} \), which is a contradiction because by \((n \times n)\) Latin square \(L = l_{ij} \) generate a linear code modulo \(n \) then \(l_{100} = 0 \)

\(K \) is not a Latin square.

Theorem (5) : suppose that the prime factorization of \(n \) is \(n = p^1 p^2 \ldots p^h \), such that \(p^1 \leq p^2 \leq \ldots \leq p^h \) and \(p^1 p^2 \ldots p^h \) are prime. Then there exists such that \(p^1 - 1 \) mutually orthogonal Latin square of order \(n \) that generate a linear code modulo \(n \).

Proof: let \(\alpha \) be an integer in the range \(0 < \alpha < n \) that is relatively prime to \(n \).

Then the \(p^1 - 1 \) Latin square of the form \(\text{rm} \) \(L = (l_{ij}^k : \alpha, \beta) \) as \(k \) ranges from 1 to \(p^1 - 1 \) mutually orthogonal by \((\text{Lemma}^* \text{ above part 3})\).

So by \((\text{theorem} 4)\) this is a maximal set of mutually orthogonal Latin square of order \(n \) that generate a linear code modulo \(n \).

Example: we give an example of a linear code generated from 4 mutually orthogonal Latin square of order 5. We use the method described in the proof of theorem (5) with \(\alpha = 4 \):

\[
\begin{align*}
0 & \ 4 \ 3 \ 2 \ 1 \\
1 & \ 0 \ 4 \ 3 \ 2 \\
2 & \ 1 \ 0 \ 4 \ 3 \\
3 & \ 2 \ 1 \ 0 \ 4 \\
4 & \ 3 \ 2 \ 1 \ 0
\end{align*}
\]

\[
\begin{align*}
0 & \ 4 \ 3 \ 2 \ 1 \\
1 & \ 0 \ 4 \ 3 \ 2 \\
2 & \ 1 \ 0 \ 4 \ 3 \\
3 & \ 2 \ 1 \ 0 \ 4 \\
4 & \ 3 \ 2 \ 1 \ 0
\end{align*}
\]

The code \(C \) generated by these Latin square is \(C = (0,0,0,0,0,0) \), \((0,1,4,4,4,4) \), \((0,2,3,3,3,3),(0,3,2,2,2,2),(0,4,1,1,1,1) \), \((1,0,1,2,3,4),(1,1,0,1,2,3),(1,2,4,0,1,2),(1,3,3,4,0,1),(1,4,2,3,4,0),(2,0,2,4,1,3) \), \((2,1,1,3,0,2),(2,2,0,2,4,1),(2,3,4,1,3,0),(2,4,3,0,2,4),(3,0,31,4,2),(3,1,2,0,3,1) \), \((3,2,1,4,0,2),(3,4,2,0,3),(4,0,4,3,2,1),(4,1,3,2,1,0),(4,2,2,1,0,4),(4,3,1,0,4,3) \).

This code is linear and one example of this is as follows:

\[
(0,0,0,0,0,0) + (0,1,4,4,4,4) + (0,2,3,3,3,3) + (0,4,1,1,1,1) = (0,0,0,0,0,0)
\]

And \(L_1 = l_{ij}^1 \) defined by \(l_{ij}^1 = (2^k i + j) \) mod \(n \)

\(L_2 = l_{ij}^2 \) defined by \(l_{ij}^2 \equiv (2^{k-1} i + j) \pmod{n} \)

This works whenever \(2^k < n \) because

\(L_1 = (l_{ij}^1, 1, 2^k) \) and \(L_2 = (l_{ij}^2, 1, 2^{k-1}) \)

However by \((\text{lemma}^* \text{ part (3)})\) these are orthogonal because,

\(\gcd(2^k - 2^{k-1}, n) = \gcd(2, n) = 1 \), since \(n \) is odd.

When \(n = 2^w \), the following theorem show that there are no pair of mutually orthogonal Latin square of even order.

Theorem (6) : there are no two polynomial \(P_1(x, y) \), \(P_2(x, y) \) modulo 2\(^w \) for \(w \geq 1 \) that form a pair of orthogonal Latin squares.

Proof: \((\text{Lemma}^*)\) implies that \(P(x + m, y + m) = P(x) + m \pmod{m} \) for any permutation polynomial modulo \(n = 2m \).

Thus \(P_1(x + m, y + m) = P_1(x + m, y) + m \pmod{n} \) = \(P_1(x, y) + 2m \pmod{n} \) = \(P_1(x, y) \pmod{n} \)

Therefore \((P_1(x, y), P_2(x, y))\) = \((P_1(x + m, y + m), P_2(x + m, y + m))\) and the pair \((P_1, P_2)\) fails at being a pair of orthogonal Latin squares.
Theorem (7) : If n is an even positive integer, then there is no pair of $n \times n$ mutually orthogonal Latin squares that generate a linear code modulo n.

Proof : Let $A = a_{ij}$ and $B = b_{ij}$ be two $n \times n$ mutually orthogonal Latin squares that generate a linear code with $n = 2k$, for some positive integer k.

Then by (if $n \times n$ Latin square $L = l_{ij}$ generate a linear code modulo n then $l_{00} = 0$),

$2(0,k,a_{0k},b_{0k}) = (0,2k,2a_{0k},2b_{0k})$

$= (0,0,2a_{0k},2b_{0k}) = (0,0,0,0)$.

This means that $2a_{0k} = 0$ and $2b_{0k} = 0$.

We have that $a_{0k} \neq 0$ and $b_{0k} \neq 0$ because 0 already occurs in the first rows of A and B. Thus, we clearly have that $a_{0k} = b_{0k} = k$.

However, we also have $2(k,0,a_{k0},b_{k0}) = (0,0,2a_{k0},2b_{k0})$ hence $a_{k0} = b_{k0} = k$.

Therefore $(a_{0k},b_{0k}) = (a_{k0},b_{k0}) = (k,k)$.

And we have that A and B are not orthogonal, a contradiction.

References