Effect method and time of mixing on the efficiency of production and uniformity of the mixing process of feed ingredients to feed chickens

Basim Aboud Abbas\(^1\) Basim Rahem Bader\(^1\) Salah. M. A Al-Tamimy\(^1\)

\(^1\) College of Agriculture - University of Diyala

Abstract

Factorial experiment was carried out for testing included mix by mixer and mixing by hand with three times of the mixing are 5, 10 and 15 minutes. The consumption electricity, efficiency of the mixer, the productivity, and the coefficient of variance and standard deviation was studied. A completely randomized design with three replicates was used. Results showed that the use of mixer is no significant effect on Power consumption and significantly affected on efficiency and productivity, and gave the highest productivity with 5 minutes time. Mechanical mixing is led to lower coefficient of variance and standard deviation, increasing periods of mixing decreasing coefficient of variance and standard deviation.

Key Words: Feed mixing, Mechanical mixer, Mixing, Diets mixing
المؤتمر الدولي العلمي الثالث للعلوم الزراعية – الدراسات العليا

III. International Scientific Conference for Agricultural Sciences

على 10 % إذا تجاوزت ذلك على وجود خطا في تركيب العلامة أو طريقة خلطها. وجد (العجيلي، 2004) أن تغير زمن الخلط يعد من العوامل المؤثرة في أنتاج الخلايا. (الساساوي ووهب، 1990) الأدوار البيئية بأنه يمثل معدل أحرار قيم مشاهدات العينة من متوسطها، وذلك فهي تعطي فكرة عن درجة التجانس بين قيم المشاهدات للكمية. يهدف البحث إلى معرفة تأثير طريقة زمن الخلط في كفاءة إنتاج عملية الخلط وتعتبر خلطة المواد المكونة للعيلة.

المواضيع وطرق البحث

استعملت في الاختبار علامة خاصة بغنى النجاح مكونة من عدد من المواد العقيلة وفق نسب محددة و المشكلات أواز كل منها وهي 16 % ذرة صفراء، 53 % حنطة، 23 % تنبات الصويا، 6 % بروتين حيواني، 1 % زيت نباتي، 0.5 % مسحوق حب كلف، 0.25 % ملح طعام، 0.25 % فيتامينات ومعدن. وليست كفاءة عملية الخلط مثبتة خطوات الاختبار المذكورة من قبل (Behnke و Herman، 1994) وقود عم خلطة مختبري ذو سعة 500 ع.م. مع الخلط اليدوي وعدسة أوقات للخلط (حدثت من وقت انتهاء وضع المواد العقيلة جاهزة للخلط) وتم تحديدها وفقا لما ذكره (محمد علي ودميان، 1988) وبذلك أدخل معايرة في أجراء التجربة وهما كالتالي:

1. طريقة الخلط ومستويين اليدوي و الخلاط الميكانيكي

2. زمن الخلط وثلاث مستويات هي 5 و10 و15 دقيقة

نظمت معاملات الاختبر وفق التصميم العشوائي الكامل (CRD) وبثلاث مكررات ليكون عدد الوحدات التجريبية 18 (V. 1.73 PF)

\[P = \frac{V}{1000} \]

حيث أن:

\[P = \text{القدرة المستهلكة (كيلوواط)} \]

\[V = \text{التيار (أمبير)} \]

\[PF = \text{عامل الفوتل (يعرف بفترض 0.93 مالم يعرف) } \]

1. الكفاءة الاستهلاكية للخلط (كيلوواط/ساعة/كغم)

وقـ ما ذكره (Payne، 1997، 2009) بتطبيق المعادلة الآتية:

\[E = \frac{P}{C} \]

حيث أن:

\[E = \text{القدرة الاستهلاكية (كيلوواط/ساعة/كغم)} \]

\[P = \text{القدرة المستهلكة (كيلوواط)} \]

\[C = \text{الإنتاجية (كغم/ساعة)} \]

2. الكفاءة الإنتاجية للخلاط (كيلوواط، ساعة/كم)

3. تقييمها بـ (Payne، 1997) وتطبيق المعادلة الآتية:

\[\text{الإنتاجية وفق الطريقة المقرطة من قبل (Payne، 1997)} \]

153
النتيجة =

الوزن (كم)

والفسفور تم تقديمه بطريقة موليدات الأمونيوم المحورة، بعد تعديل درجة التفاعل للمحاولة المستخدمة والقياس بجهاز المطيافية الضوئية (Spectrophotometer) على طول موجي 852 نانومتر حسب طريقة (Sommers وOlsen) (1982).

ووفق حساب الانحراف القياسي وعامل التغير (C.V) coefficient of variation (S) Standard deviation ما ذكره (أبراهيم، 2000) لتحليل الكالسيوم والفسفور لكونها المؤشرات المعتمدان لبيان مدى تجاه مكونات الخليجة وكالاتي:

\[\text{الانحراف القياسي} = \sqrt{ \frac{\text{المعدل التغير}}{\text{وسط القيمة}}} \]

حيث مج. س = مجموع مكررات المادة المحطة

 مج. س² = مجموع مربع مكررات المادة المحطة

\[\text{الانحراف القياسي} = \sqrt{ \frac{\text{استطلاع القيمة}}{100 \times \text{وسط القيمة}}} \]

نتائج ونقاط

1- القدرة المستهلكة للخلط (كيلووات)

بين جدول (1) تأثير زمن الخلط. فقد بينت تحليل التحليل الإحصائي عدم وجود تأثير معنوي لتغير زمن الخلط في القدرة المستهلكة وتتفق هذه النتيجة مع (Harry وPfost وSommers وPfost، 1976) (المحلي، 2004).

جدول (1) تأثير زمن الخلط في القدرة المستهلكة

<table>
<thead>
<tr>
<th>القدرة المستهلكة (كيلووات)</th>
<th>زمن الخلط (دقيقة)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 0.071</td>
<td>5</td>
</tr>
<tr>
<td>a 0.069</td>
<td>10</td>
</tr>
<tr>
<td>a 0.066</td>
<td>15</td>
</tr>
<tr>
<td>n.s</td>
<td>على مستوى 0.05 LSD</td>
</tr>
</tbody>
</table>
الكافءة الإنتاجية الخطاء (كيلو واطساعة/كم)

ومن الجدول (2) يلاحظ أن زمن الخطأ أثر معنوي في كفاءة الخلاط وكانت أفضل كفاءة 0.019 كيلو واطساعة/كم مع زمن الخطأ 5 دقيقة ويعزى ذلك إلى أن هذا الزمن حقًا على انتاجية الخلاط. وتفق هذه النتيجة مع (Pfost، 1976) و (العجيلي، 2004).

جدول (2) تأثير زمن الخلاط في كفاءة الخلاط

<table>
<thead>
<tr>
<th>جزء الخلاط (كيلو واطساعة/كم)</th>
<th>زمن الخلاط (دقية)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.019</td>
<td>5</td>
</tr>
<tr>
<td>0.038</td>
<td>10</td>
</tr>
<tr>
<td>0.055</td>
<td>15</td>
</tr>
</tbody>
</table>

على مستوى LSD 0.05

- التخليصة (كم/ساعة)

بين جدول (3) تأثير طريقة وزمن الخلاط في إنتاجية الخلاط. فقد بنيت نتائج التحليل الإحصائي عدم وجود تأثير معنوي لطريقة الخطأ في الإنتاجية، كما توضح من الجدول (3) وجود تأثير معنوي لتغيير زمن الخلاط في الانتاجية وكانت أعلى إنتاجية 3.582 كم/ساعة مع أقل زمن للخلاط 5 دقيقة. وذلك لأن انتاجية الخلاط تعتمد على حصول قسمة الوزن بالنسبة لزن الخلاط فكلما زاد زمن الخلاط قلت الإنتاجية. وهذه النتيجة تتفق مع نتائج (العجيلي، 2004). كما أظهر الجدول عدم وجود فرق معنوي لتلاثير التنازل بين طريقة وزمن الخلاط في الانتاجية.

جدول (3) تأثير طريقة وزمن الخطأ في الانتاجية

<table>
<thead>
<tr>
<th>جزء الخلاط (دقية)</th>
<th>طريقة الخلاط</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>هندي</td>
</tr>
<tr>
<td>10</td>
<td>خلاط</td>
</tr>
<tr>
<td>5</td>
<td>تأثير الزمن</td>
</tr>
<tr>
<td>a 2.188</td>
<td>a 1.189</td>
</tr>
<tr>
<td>a 2.182</td>
<td>a 1.784</td>
</tr>
<tr>
<td>c 1.188</td>
<td>c 1.786</td>
</tr>
</tbody>
</table>

على مستوى LSD 0.05

ن.س: التداخل 0.009

- معامل التغيير (%) والانحراف القياسي للكلسوم

بين جدول (4) تأثير طريقة وزمن الخلاط في في معامل التغيير والانحراف القياسي الخاص بتحليل الكلسوم، إذ يلاحظ ان معامل التغيير والانحراف حقاً ادراك عند استعمال الخلاط مقارنة بالخلاط اليدوي، من خلال تقديرات أكبر لجوانب الطاقة عند خلطها بالخلاط كما يلاحظ أن زيادة زمن الخلاط من 5 إلى 10 ثم إلى 15 دقيقة، حقه هو الآخر انفلاج في معامل التغيير والانحراف القياسي للخلاط. ومع استعمال الخلاط حق زمن الخلاط 15 دقيقة أنف با من حيث أقل معامل للتيغبار 0.016 % مصحوب بالانحراف القياسي للتيغبار وقيمة 0.0010 مقاينة بالخلاط اليدوي الذي ارتفع فيه معامل التغيير عند نفس الزمن (Hancock، 1982) و (الصيغي، 1983) و (العجيلي، 2000).

جدول (4) تأثير طريقة وزمن الخلاط في معامل التغيير والانحراف القياسي للكلسوم

<table>
<thead>
<tr>
<th>انحراف القياسي</th>
<th>معامل التغيير (%)</th>
<th>زمن الخلاط (دقية)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.191</td>
<td>0.0066</td>
<td>5</td>
</tr>
<tr>
<td>0.588</td>
<td>0.0035</td>
<td>10</td>
</tr>
<tr>
<td>0.479</td>
<td>0.0029</td>
<td>15</td>
</tr>
<tr>
<td>0.674</td>
<td>0.0045</td>
<td>5</td>
</tr>
<tr>
<td>0.350</td>
<td>0.0021</td>
<td>10</td>
</tr>
<tr>
<td>0.016</td>
<td>0.0001</td>
<td>15</td>
</tr>
</tbody>
</table>
5- معامل التغير (\%) والحرارق القياسي للفسفور

بين جدول (5) تأثير طريقة وتغذية زمن الخلط في معامل التغير والحرارق القياسي الخاص بتحليل الفسفور، إذ يلاحظ ان معامل التغير والحرارق القياسي عند استعمال الخلاط مقارنة بالطلع اليدوي من 0.980 إلى 0.908. حقيقة هو الآخر اختلافاً في معامل التغير والحرارق القياسي للخلاط. مع استعمال الخلاط تم زراعة 15 ذكر فتى من قبلخف مع الاقل معامل التغير 0.191% مصحوب بالانزاع الحرارق القياسي للخلاط اليدوي 0.0003. هذا الابتكار في معامل التغير عند نفس النسج وتغذية 1.087% وبالحرارق القياسي 0.0026 وهذا يتفق مع ما اشار إليه الباحثون احمد وسلام (1982) و (2000) و السعدي (1983).

<table>
<thead>
<tr>
<th>الحرارق القياسي</th>
<th>معامل التغير %</th>
<th>زمن الخلط</th>
<th>طريقة الخلط</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0055</td>
<td>2.581</td>
<td>5</td>
<td>يدوي</td>
</tr>
<tr>
<td>0.0020</td>
<td>0.980</td>
<td>10</td>
<td>خلط</td>
</tr>
<tr>
<td>0.0026</td>
<td>1.087</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>0.0019</td>
<td>0.811</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.0005</td>
<td>0.247</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.0003</td>
<td>0.191</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

المراجع