Effect of Spraying Nitrogen and Some Plants Extracts in the Vegetative Growth on (*Lavandula officinalis* L)

Alaulddin Abdulmunem Abbas

Department of physiology and Pharmacology – College of Veterinary Medicine – Baghdad University

Accepted on 27/9/2011

Summary

This study was conducted in the special nursery in Mansour - Baghdad at 2011. to study the effect nitrogen 05 and 02 grams per liter in the form of urea as well as spraying four plant extracts which are *Glycyrrhiza glabra* *urtica dioica* *Allium sativum* *Trigonella foenum – graecum* and concentration of 5 grams per liter of distilled water and every extract plant in addition to the control treatment. Treatments were applied three times and the first was applied at 15-5-2011and the following
applications were 15 days after the first application. Experiment were
conducted using complete randomized block design with three replicates.
Results, were analyzed using least significant differences at 5%
probability. The results are summarized as follows:

It was to spray the extract of Glycyrrhiza glabra significant effect in
plant height it was 26.86 cm / plant compared to the treatment which was
2305 cm / plant, as well as to spray the extract of Urtica dioica
significant effect in stem diameter of the main plant which was 0.34 cm
with different insignificantly in compare with treatment of spraying
extract of Trigonella foenum – graecum compared to the treatment was
0.21 cm also surpassed the treatment spraying 0.5 grams per liter of
nitrogen significantly recipe in the number of branches per plant the
number of branches 17.30 compared to the treatment comparison which
reached 12.93.

Either as the number of plant leaves it has surpassed the treatment spray
Glycyrrhiza glabra extract significantly compared to other transaction it
was 51083 leaf / plant compared to the treatment of non-spray amounting
to 38783 leaf / plant and the results showed than spray treatment
Glycyrrhiza glabra extract significantly in the description of total length
of branches amounting to 395.90 cm / plant It also surpassed the
treatment spray extract Urtica dioica significantly in the dry weight of
leaves and was 61.13 gram / plant which was not different from the
treatment of nitrogen 05 gram / L.

As for the percentage content of chlorophyll pigment in the leaves was
surpassed by 0.5 gN/L treatment of spraying nitrogen amounting to
33.60% which did not differ from treatment to extract spray Urtica
dioica

المقدمة

يعود نبات الخزامي (Lavandula officinalis L) Lavender
الى العائلة الشفوية (Lamiaceae) Labiatae
في منطقة البحر الأبيض المتوسط ويعتبر النوع
(L officinalis L) يُعرف النبات منذ القدم ويعتقد ان العراق هو الوطن الاصل للنبات الخزامي وكان الرومان
يستخدموه في بعض حماماتهم إذ استخدم النبات في زمن الاغريق والرومان في علاج مجموعة
كبرى من الأمراض حيث استخدم كمكمل ومنبه ولعلاج الصدر وفي معالجة الاضطرابات
المعوية واضطرابات الكلى ومعالجة الجروح والبقع والدغ النمرات. واستخدم الخزامي أيضًا
في أريضات المستشفى لازالة الروائح وكمطور كم استخدمت الأوراق بين الملايين كعطر
وطارد للحشرات والغبار وطارد للبعوض واستخدم أيضًا في القرون اللاحقة لمعالجة الصداع
والحساسية والحالات وحيدة الصوت وشلل وألم الأسنان والمفاصل ومعمق في حلول والمغص
ومعالجة الصداع النصفي وأستخدمت الراهبة الألمنية الخزامي عام 1630 عندما اجتاح
الطاعون مدينة تولوز الفرنسية لغرض الحد من انتشاره وذلك بمزج الزعتر واللافندر (4).

للنبات اسماء عربية منها الخزامي، اللاوند، اللافندر، نبات خيري البر، الورزم، حوض
فاطمة ويطلق عليه هديه الله الى الأرض اشتق اسم اللافندر من الفعل
Lavare ويعني باللاتينية
تجمع زراعة الخضري في التربة الجيدة الصفر والرملية الخفيفة وأن كانت فائرة بالمواد الغذائية، وينتج النبات في اماكن مشمسة. يتحمل درجة الحرارة المنخفضة لفترات طويلة وتتحمل الملوحة، وتحتوي على رطوبة معتدلة. والخضريات والثمار ومكثث بالبذور والعقد الخضرية والترقيق ونوعاً للصبغة زراعتها بالبذور كما أن زراعتها بالبذور أو الرقاق أو اقتراحيات من الحمضية والترقيق الأكثر انتشاراً يحتوي النبات على 300/كم² هسلفات الأمونيوم (5) ووراق النبات متضيقة والفروع خضراء وردية الزوايا، الجذور متفرعة تؤثر على النبات. مططاً معطاة إشارة عضوية الرائحة، والأزهر على شكل سحابية قطعياً (16-18) سم وألوان الزهور التي ينضج إلى اللون الرمادي تتم التطور في النبات. والورقة الزهرية حيث تحوّي على الزهور الطية بنسبة 0-2% ويعتبر زيت الافضدة عدة مركبات اهمها الفابئين، السنيبول، النشادي، الكافءارول، اليموني.

المواد وطرق العمل

تم تقسيم النباتات في مستوي كلية العلوم، جامعة بغداد من قبل الدكتور على الباني نفد البحث في الشهر الخامس 2011. في ظل الشريحة في منطقه المنصور دي أسرار جوالات النبات numérique ذات الاستخدامات الطبية في النمو الخضري لنبات الخضري (Lavandula officinalis L) وتضمنت معالمة مستويين من التربا (02، 05 غم/لتر) على هيئة بوبور (46%) وبور بعموم (Glycyrrhiza glabra) وورقة عروق (Urtica dioica) وثوم (Allium sativum) وثوم (Trigonella foenum – graecum) وثوم (Chlorophyll meter) وساعة واحدة. وتم استخدام مسحح يدوية حجم 1 أثر حيث وضع كمية قليلة من مادة الزاهي في المرشة كمادة ناشئة (8).

تم تحضير المستخلصات بجلب مسحوق جذور النباتات عروق السوس وبذور الأوراق وورقة الخضري ثم تفنق 10 جم من كل مستخلص في لماء مقط درجة حرارة 50م، لمدة 24 ساعة ثم شرح المحلول الناتج لكل مستخلص بقطعين من القماث الملمع. أما مستخلص عصير الثوم تم تشتريق المحلول الناتج بقطعين من القماث وكملك المحلول إلى 1000 سم³ ماء مقط (11). وتم قياس كل نبات عبر مقتروحة من منطقة انساكيات بالربة إلى على قمة في النبات بواسطة شريط القياس. وقطر الساق للنبات: إذ تم قياس الساق من منتصف الساق، وعند الأمراع: تم حساب عدد الأوراق. تم حساب عدد الأوراق وسط الزيت في نهاية الربة في كل نبات من نباتات الربة. وجمعيه أطوال الأوراق: تم قياسها بواسطة شريط القياس، ووزن الجذور: تم قياس الزيت المغذى وبيدها ثم وزن النباتات بعد التجفيف في درجة حرارة 70م ولد 24 ساعة. وحيثي تحتوي الوزن (8) وكمول في النسب (%) : تم قياس kızحتو السوسي للاوراق من الكابرويل بجهار وف студент (Minolta).
بلاحظ من نتائج الجدول (2) أن هناك فرق معنوي في زيادة طول النباتات التي رشت بمستخلص عرق السوس باعلي طول نبات بلغ 26.86 سم مقابل 20.23 سم لعملية المقارنة.

وقد يعد السبب في زيادة طول النبات عند الرش بمستخلص جذور عرق السوس إلى محتواه من حامض الميفالونك (Mevalonic acid) الذي ينتمي إلى الكاربوفيراتات (5-12) ويعمل على تنشيط النمو والاستقلالية الوراثية للنباتات، مما يؤدي إلى زيادة طول النباتات.

اما بالنسبة لزيادة طول النباتات فظهرت ملاحظات كافية لدعم النتائج الإيجابية للصورة المذكورة في الجدول (3) ونسبة طول النباتات بلغت 19.7% بناءً على مقارنة الفترات لتمدد النباتات.

وفي النهاية، يتضح من النتائج أن استخدام النباتات المحفزة للنمو والذروة في مراحل النمو المختلفة، يمكن أن يكون جذور عرق السوس (Glycyrrhizinic acid) مصدراً لزيادة طول النباتات، مما يؤدي إلى نتائج إيجابية في زيادة طول النباتات.

وبالنسبة لنتائج الحمضات الكبيرة، فقد علمنا أن ماء نبتة أقله 35% من الماء يؤدي إلى تراجع نمو النباتات، بينما يمكن أن يكون النباتات المغذية في مراحل النمو المختلفة، مما يؤدي إلى نتائج إيجابية في زيادة طول النباتات.

ونتائج هذه الدراسة يمكن أن تكون مفيدة في تحسين منح النباتات المحفزة لنمو النباتات والحد من تأثير السبب في النمو في مراحل النمو المختلفة.
يبني من الجدول (4) تأثير النتروجين في محتوى أوراق النباتات من صبيغة الكلوروفيل
اذ توقفت العملية التي رست بـ 0.5 غم / ن / ك مثلاً بقية العاملات إذ بلغت 33.60% والتي
لم تفلت معنويّاً عن النباتات التي رشت بمستخلص الفرير إذ بلغت 33.47% مقارنة بمعالجة
المقارنة التي بلغت 29.26% وقد جوز السبب في تفوق معاملة الرش بالتروجين 0.5 غم / لتر
إلى دخل النتروجين في تركيب عدد كبير من المركبات الصيدلية في العمليات الحيوية للنبات
ودخله في تركيب جذوة الكلوروفيل وعنصر التروجين جزء تركيبي كثيّر من المواد
والمركبات النباتية وهذه تضم الأحماض الأمينية والبروتينات وهي مهمة في بناء الخلية النباتية
ومنها البلاستيدات الخضراء (8 و 20).

جدول (1) أهم العناصر المعدنية في بعض المستخلصات النباتية

<table>
<thead>
<tr>
<th>المستخلص الثوم</th>
<th>مائري غرام / غم</th>
<th>مائري غرام / ن / ك</th>
<th>مائري غرام / أوراق / ن / ك</th>
</tr>
</thead>
<tbody>
<tr>
<td>مستخلص الفرير</td>
<td>167.2</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص عرق الصلب</td>
<td>0.03</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص غزٍ</td>
<td>0.05</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص عرق النار</td>
<td>0.21</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص غزٍ</td>
<td>0.05</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص عرق الصلب</td>
<td>0.21</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص الفرير</td>
<td>167.2</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص غزٍ</td>
<td>0.03</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص عرق الصلب</td>
<td>0.05</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>مستخلص غزٍ</td>
<td>0.21</td>
<td>0.21</td>
<td>0.70</td>
</tr>
</tbody>
</table>

المصدر: (22-24)

جدول (2) تأثير النش باليوريا والمستخلصات النباتية في ارتفاع النباتات وطفر الساق الرئيسي للنباتات (سم)

<table>
<thead>
<tr>
<th>المعادلة</th>
<th>ارتفاع النباتات (سم)</th>
<th>الخط الطبقي (سم)</th>
<th>*0.030</th>
</tr>
</thead>
<tbody>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.21</td>
<td>0.7 ± 23.05</td>
<td>0.02</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.24</td>
<td>0.42 ± 24.64</td>
<td>0.03</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.28</td>
<td>0.08 ± 26.86</td>
<td>0.04</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.34</td>
<td>0.43 ± 23.93</td>
<td>0.05</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.34</td>
<td>1.16 ± 24.30</td>
<td>0.06</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.34</td>
<td>1.16 ± 24.30</td>
<td>0.06</td>
</tr>
</tbody>
</table>

جدول (3) تأثير النش باليوريا والمستخلصات النباتية في عدد الأفرع وعدد الأوراق وعدد الأعماق للنوات ومجموع اطوال

<table>
<thead>
<tr>
<th>المعادلة</th>
<th>المتوسط + الخط الطبقي (سم)</th>
<th>*0.030</th>
</tr>
</thead>
<tbody>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.21</td>
<td>0.7 ± 23.05</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.24</td>
<td>0.42 ± 24.64</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.28</td>
<td>0.08 ± 26.86</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.34</td>
<td>0.43 ± 23.93</td>
</tr>
<tr>
<td>السبيرة (المقارنة)</td>
<td>0.01 ± 0.34</td>
<td>1.16 ± 24.30</td>
</tr>
</tbody>
</table>

المصدر: (22-24)

179
المجلة الطبية البترورية العراقية 35 (2) : 175 – 181، 2011.

جدول (4): تأثير الرش بالبوليا ومستخلصات النباتات في الوزن النفاذ للأوراق (غم/نبات) والمحتوى

المتوسط ± النقطة العظمى

<table>
<thead>
<tr>
<th>المحتوى النسيب من صبغة الكلاوريفل</th>
<th>الوزن النافذ للأوراق (غم/نبات)</th>
</tr>
</thead>
<tbody>
<tr>
<td>السببطة (المقارنة)</td>
<td></td>
</tr>
<tr>
<td>056 ± 2926</td>
<td>1.62 ± 47.17</td>
</tr>
<tr>
<td>170 ± 2933</td>
<td>0.52 ± 56.67</td>
</tr>
<tr>
<td>055 ± 3360</td>
<td>1.01 ± 61.10</td>
</tr>
<tr>
<td>024 ± 3207</td>
<td>0.47 ± 58.50</td>
</tr>
<tr>
<td>048 ± 3347</td>
<td>0.85 ± 61.13</td>
</tr>
<tr>
<td>035 ± 3067</td>
<td>0.47 ± 54.33</td>
</tr>
<tr>
<td>054 ± 3133</td>
<td>1.14 ± 57.37</td>
</tr>
<tr>
<td>* 2558</td>
<td>* 3.062</td>
</tr>
</tbody>
</table>

المصادر

1. حسن، سعد علي (1999). دراسة بعض العوامل المؤثرة في الصفات الكمية والتنويعية للزيوت

العطرية في النبت و النبات.

8. العمران، وفاء هادي حسين (2004). تأثير بعض المستخلصات النباتية في نمو وهاخل الخيام الوبط البلاستيكية المدفنة رسالة ماجستير كلية الزراعة جامعة بغداد

13. موسي، طارق ناصر وعبدالحبار ولي الله الحديثي وكليوب عبدالمجيد ناصر (1999). دراسة بعض مكونات مسحوق عرق السوس المحلي (Glyeyrrhiza glabra) مجلة العلوم الزراعية مجلد (4) عدد 34.

16. الخزرجى، عبدالحبار وعبدالكريم عبد الوهاب وسامي مهدي المحمى (2002). التحليل الكيميائي لنبات الفريد (Melaleuca alternifolia) وآثار أضافته بمستويات مختلفة في بروتينات الدم لدى فروج Urtica dioica الكيميائي لنبات الفريد وتائر أضافته بمستويات مختلفة في بروتينات الدم لدى فروج Urtica dioica

