DAMAGE DETECTION IN ROTATING BLADE BY VIBRATIONAL ANALYSIS USING FINITE ELEMENT METHOD

Dr. Nabil H. H. Shwan A. Z.
Univ. of Baghdad Univ. of Baghdad
College of Eng. College of Eng.

ABSTRACT

The development of monitoring systems for rotating blade has been driven by a desire to reduce the maintenance costs and human interaction to improve the safety, reliability and operational life, so it is urgent to monitor the integrity of a structural systems. In this study four different coordinate system has been used to describe the blade motion, then an element stiffness and mass matrices has been formulated by using Hamilton’s principle and finite element method, where each element has been described by seven degrees of freedom, so the method has been demonstrated analytically on a finite element model to estimate the modal parameters under rotating and non-rotating conditions in vacuum (to eliminate aerodynamic effect and damping coefficient) and to capture centrifugal effect, so the damage has been simulated by stiffness reduction of assumed elements and by crack form. These results was reasonable, so many parameters has been investigated such as, damage severity, damage location and the effect of rotation speed on these methods have been studied, as well as an assessment has been provided for these methods via statistic to suggest the effective method and this is the main objective, so The Residual Error Method was the best, compared with other methods. All formulations and computations has been coded in MATLAB version 7.

الخلاصة:

حصل التطوير في مراقبة الريش الدوارة لتنقيح كلفة الصيانة وتنقيح استخدام الأيدي العاملة لتحسن ظروف السلامة والمحافظة على العمر الافتراضي للريشة، لذا كان من الضروري مراقبة كمالية الريشة.

استخدمت في هذه الدراسة أربعة Coordinate Systems لوصف حركية الريشة ومن ثم صياغة مصفوفات الجسماء والكتلة بواسطة العناصر المحددة Hamilton Principle، حيث أن كل عنصر يحتوي سبع درجات من FEM وطريقة العناصر المحددة

هاملتون الحرية. وبهذا استخدم الحل العددي لحساب الترددات الطبيعية واشكالها الاهتزازية أثناء سكون الريشة واثناء دورانها في الفراغ (تنقل تأثير القوة الهواء) و التماس تأثير القوة الطاردة المركزية. ومن ثم تمثيل الضرر في الريشة على شكل نقاسان في الجسماء Cracks وعلى شكل شقوق

بالاعتماد على الترددات الطبيعية واشكالها الاهتزازية تم استخدام عدة طرق للكشف للأضرار وذلك باستخدام سيناريوهات خاصة بهذه الأضرار وواقعها على الريشة.
KEYWORDS: Damage, Rotating blade, Finite element method.

INTRODUCTION:

In the past few years the problem of health monitoring and fault detection of structures has received considerable consideration. It was noted that fault causes changes in the dynamic response of the structure, so the change can be considered as an indication of damage in a structure, consequently the scheme of fault detection are based on the comparison of the dynamic response of healthy structure with the dynamic response of defected structure. Vibration analysis has been found as an important tool in the investigations of the dynamical behavior of many industrial applications like many types of rotating blade such as axial fan, impeller, turbine, helicopter and wind turbine blades … etc.

Blade failure normally occurs when the blade is vibrating at or near resonant condition and there are many factors that can induce a damage in a mechanical structure such as, a general environmental attacks, erosion, corrosion, creep, fatigue, where the fact that many factors can contribute to form a crack (Al-said et al 2006), so it is the most common type of defects that occurs in structures (Mohammad and Omar 2003).

A crack in a structure introduces a local flexibility which is a function of the crack depth, and this flexibility changes the stiffness and the dynamic behavior of the structure (Ricci and Viola 2002), so numerous attempts to quantify local defects are reported to the literature, generally the damage reduce the natural frequencies of a structure because it becomes more flexible, where this fact had been extensively used to detect the presence of damage in a structural component, so the damage is simulated by reducing the stiffness of assumed elements and by crack form also.

An important factor which based on damage detection research is the implementation of reasonable damage models. The models must accurately reflect the physics of the damage, and be compatible with the damage evaluation techniques which discussed in chapter five. Although there are many ways in which the rotor system can be damaged, this work will be limited to two categories of faults:

1- Distributed stiffness faults. 2-Cracks.

The global stiffness matrix has been developed for the eigenvalue problem (Herrera 2005).

BLADE KINEMATICS AND COORDINATE SYSTEMS:

Four different coordinate system are used to describe the blade motion. These coordinate systems, as listed, are the inertial, hub-fixed, undeformed-blade and deformed-blade coordinate systems. The inertial coordinate system \((X_z, Y_z, Z_z)\) with unit vectors \(\hat{i}_X, \hat{j}_X, \hat{k}_X\) is a ground-fixed reference frame and there is no fuselage motion and the hub fixed coordinate system \((X_H, Y_H, Z_H)\) with unit vectors \(\hat{i}_H, \hat{j}_H, \hat{k}_H\) is assumed parallel to the inertial coordinate system, as shown in Fig. (1).
The undeformed-blade coordinate system (x,y,z) with unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ is attached to the undeformed blade. The z axis of the undeformed-blade coordinate is parallel to the Z_H axis of the hub fixed coordinate system and the blade is rotating about this axis at a constant angular velocity Ω, as in Fig.(2) as well as the x-axis lies along the blade elastic axis and the y-axis is in the plane of rotation. In some rotor systems the equilibrium flap position is not parallel to the hub plane and this “precone” is incorporated to relieve stress in the blade root, so precone angle is neglected in this derivation because it is very small (Hodges and Dowell 1974). The transformation between the hub-fixed non-rotating and undeformed-blade coordinate systems is defined as:

$$\begin{bmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{bmatrix} = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{i}_H \\ \hat{j}_H \\ \hat{k}_H \end{bmatrix} = T_{UH} \begin{bmatrix} \hat{i}_H \\ \hat{j}_H \\ \hat{k}_H \end{bmatrix}$$

(1)

The final coordinate system to discuss is the deformed-blade coordinate system (ξ, η, ζ) with unit vectors $\mathbf{i}_\xi, \mathbf{j}_\eta, \mathbf{k}_\zeta$. The transformations to get this last coordinate system is shown in Fig.(3). The elastic axis undergoes flap deflection, which contributes both a translation (w) and then undergoes a negative rotation (w'), about the undeformed-blade axis-y, as shown in Fig. (3 a). At this point the blade elastic axis is coincident with the ξ axis of the deformed-blade coordinate system, then the blade cross section undergoes twist (Θ_2) about the axis ξ, as shown in Fig.(3 b), where the total blade pitch Θ_1 is expressed as:

$$\Theta_1 = \Theta_0 + \phi$$

(2)
Where θ_0 is the pitch angle due to control and it is very small, and Φ is the elastic twist.

Fig. (3) Transformations from undeformed-blade to deformed-blade coordinate systems and blade cross section coordinate system

The transformation from the deformed-blade to undeformed-blade coordinate systems as in Fig. (3) is given as following (Stevens 2001):

$$
\begin{bmatrix}
\hat{x} \\
\hat{y} \\
\hat{z}
\end{bmatrix} =
\begin{bmatrix}
\cos \beta & -\sin \beta \sin \theta & -\sin \beta \cos \theta \\
0 & \cos \theta & -\sin \theta \\
\sin \beta & \cos \beta \sin \theta & \cos \beta \cos \theta
\end{bmatrix}
\begin{bmatrix}
\hat{x}_U \\
\hat{y}_U \\
\hat{z}_U
\end{bmatrix} = T_{UD}
\begin{bmatrix}
\hat{x}_U \\
\hat{y}_U \\
\hat{z}_U
\end{bmatrix}
$$

Where β and θ are Euler angle and can be approximated by Eq. (4).

$$
\cos \beta = \sqrt{1 - w'^2} , \quad \sin \beta = w' , \quad \theta = \theta_1
$$

Substituting these approximations into Eq. (3) yields a more useful form of the transformation from deformed to undeformed coordinate systems, and by using local linear approximation.

$$
T_{UD} =
\begin{bmatrix}
\left(1 - \frac{w'^2}{2}\right) & -w' \sin \theta_1 & -w' \cos \theta_1 \\
0 & \cos \theta_1 & -\sin \theta_1 \\
w' & \left(1 - \frac{w'^2}{2}\right) \sin \theta_1 & \left(1 - \frac{w'^2}{2}\right) \cos \theta_1
\end{bmatrix}
$$

The origin of the deformed-blade coordinate system is the blade elastic axis, and a chordwise locations must be defined relative to this point, as shown in Fig.(4), where the center of gravity is at a distance (eg) from the elastic axis; and (eg) is assumed positive forward.

Fig. (4) The location of elastic axis and center of gravity on the chord
HAMILTON'S PRINCIPLE:

Hamilton's principle is used to derive the finite element equations to describe the rotor systems. Hamilton's principle for conservative systems states that the true motion of a system between two arbitrary moments in time integral of the difference between potential and kinetic energies. If the system is subject to non-conservative forces, such as the aerodynamic forces imposed, so the virtual work terms must be included, and Hamilton's Principle may be expressed as (Hodeges and Dowell 1974):

\[
\delta \Pi = \int_{t_1}^{t_2} (\delta T - \delta U + \delta W) \, dt = 0
\]

(6)

Where the variation of blade strain energy \(\delta U \) in terms of engineering stress-strain relation, is given by:

\[
\delta U = \int_0^R \int_A \left(\sigma_{xx} \delta \varepsilon_{xx} + \sigma_{x\eta} \delta \varepsilon_{x\eta} + \sigma_{x\xi} \delta \varepsilon_{x\xi} \right) d\eta d\xi dx
\]

(7)

\[
\sigma_{xx} = E \varepsilon_{xx} , \quad \sigma_{x\eta} = G \varepsilon_{x\eta} , \quad \sigma_{x\xi} = G \varepsilon_{x\xi}
\]

(8)

The engineering strains can be expressed in terms of translation displacement \(w \), rotation \(w' \), curvature \(w'' \), twist \(\Phi \), twist rate \(\Phi' \), also we should refer that the non-dimensional scheme is used for the ensuing derivations, where this scheme is necessary in order to increase the generality of the analysis in the numerical implementation, therefore for the flap-torsion case the non-dimensional variation in strain energy becomes (Stevens 2001):

\[
\frac{\delta U}{m\Omega^2 R^2} = \int_0^1 \left(EI_{yy} \cos \Theta \right)^2 w'' \delta w'' + \frac{m \Omega^2}{2} (R^2 - x^2) w' \delta w' + GJ \Phi' \delta \Phi' \right) ds
\]

(9)

Where the tension is given as (Solaiman 1999). As well as the kinetic energy of the blade depends on the blade velocity. Since fuselage motion is not accounted for this derivation, the blade velocity is due only to the blade motion relative to the hub, as well as the derivation describes only flap and twist motion of the blade, so the position of an arbitrary point after the beam has deformed is given by \((x_1, y_1, z_1)\), see Fig. (3)

\[
\begin{align*}
x_1 &= x + u - w' (\eta \sin \Theta_1 + \zeta \cos \Theta_1) \\
y_1 &= \eta \cos \Theta_1 - \zeta \sin \Theta_1 \\
z_1 &= w + \eta \sin \Theta_1 + \zeta \cos \Theta_1
\end{align*}
\]

(10)

Then differentiating the position vector with respect to the hub-fixed non-rotating coordinate system yield (Stevens 2001):

\[
\overline{V}_b = \overline{V}_{b\xi} \hat{i} + \overline{V}_{b\eta} \hat{j} + \overline{V}_{b\zeta} \hat{k}
\]

(11)

\[
\delta T = \int_0^R \int_A \rho \overline{V}_b \cdot \delta \overline{V}_b d\eta d\xi dx \quad \text{(variation in kinetic energy)}
\]

(12)

From Eq.(12)-(14) and via integrating by parts as in reference, the non-dimensional variation of kinetic energy becomes:

\[
\frac{\delta T}{m\Omega^2 R^2} = \int_0^1 \left(T_w \delta w + T_{w'} \delta w' + T_{\Phi} \delta \Phi \right) ds
\]

(13)
\[T_w = -m \ddot{w} - \dot{\phi} m e_g \cos \theta_0 \]
\[T_{w'} = -x m e_g \Omega^2 \sin \theta_0 - \dot{\phi} x m e_g \Omega^2 \cos \theta_0 \]
\[T_\phi = -\ddot{\phi} m e_g \Omega^2 \cos \theta_0 - \dot{\phi} m k^2_{m1} - w' x m e_g \Omega^2 \cos \theta_0 \]
\[-m \Omega^2 (k^2_{m2} - k^2_{m1}) \cos \theta_0 \sin \theta_0 - \dot{\phi} m \Omega^2 (k^2_{m2} - k^2_{m1}) \cos 2 \theta_0 \]
\[\text{So the virtual work } \delta W \text{ of non-concentrative forces may be expressed as:} \]
\[\delta W = \int_0^L (L_\omega \delta w + M_\phi \delta \phi) dx \]
(15)

The terms due to the blade airfoil are \((L_\omega)\), where the distributed air load in the \((z)\) direction, and \((M_\phi)\) the aerodynamic pitching moment about undeformed elastic axis, but in this study the aerodynamic effects are not included.

BLADE FINITE ELEMENT:

The spatial finite element equations of motion are derived in this section, and the generalized Hamilton's principle must be written in the non-dimensional form, so the displaced form in Eq. (16):

\[\delta \Pi = \int_{\tilde{\psi}_1}^{\tilde{\psi}_2} \sum_{i=1}^{N} (\delta T_i - \delta U_i + \delta W_i) d\tilde{\psi} = 0 \]
(16)

The blade finite element discretization is shown in Fig. (5), where the blade is discretized into \(N\) beam elements, each consisting of seven degrees of freedom, so these degrees of freedom are distributed among three nodes, two external and one internal, as well as the displacement of the left hand node is described by lateral displacement, slope and twist denoted as \((w, \zeta \text{ and } \phi)\), likewise the displacement of the right hand node is described by \((w, \zeta \text{ and } \phi)\), and the displacement of the internal node is described only by a twist \((\phi)\). Elemental boundary conditions require continuity of displacement and slope of flap deflection and continuity of displacement of elastic twist.

Within each element, deformations between the nodes are described using shape functions, where these shape functions, are derived from a cubic Hermitian polynomial for flap deformation and a quadratic polynomial for torsion deformation (Rao S. S. 1989), and by using these shape functions the continuous deflections over a beam elements can be expressed in terms of the nodal displacements \(q_i\), as in Eq. (17).

\[u(s) = \begin{pmatrix} w(s) \\ \phi(s) \end{pmatrix} = \begin{bmatrix} H_w \\ 0 \end{bmatrix} q_i \]
(17)

\[q_i^T = [w_A, w_A', w_B, w_B', \phi_A, \phi_M, \phi_B] \] (elemental nodal displacement vector)
(18)
Fig. (5) Finite element discretization and elemental degrees of freedom

The polynomials for the bending and torsion shape functions are given in Eq. (19), respectively, where \(s = \frac{x}{L_i} \) and \(L_i \) is the length of the \(i^{th} \) beam element.

\[
H_w^T = \begin{bmatrix}
H_{w1} & \frac{2s^3 - 3s^2 + 1}{l_i(s^3 - 2s^2 + s)} \\
H_{w2} & -2s^3 + 3s^2 \\
H_{w3} & l_i(s^3 - s^2)
\end{bmatrix}, \quad H_{\phi}^T = \begin{bmatrix}
H_{\phi1} & \frac{2s^2 - 3s + 1}{2s^2 - s} \\
H_{\phi2} & -4s^2 + 4s \\
H_{\phi3} & 2s^2 - s
\end{bmatrix}
\] (19)

The variations in displacements \((\delta w) \) and \((\delta \phi) \) can be written in terms of variations in nodal displacements as in Eq. (20).

\[
\delta u(s) = \begin{bmatrix} \delta w(s) \\ \delta \phi(s) \end{bmatrix} = \begin{bmatrix} H_w & 0 \\ 0 & H_{\phi} \end{bmatrix} \delta q_i
\] (20)

Looking more closely at the expression for variations in strain and kinetic energies, as in Eq. (9) and (13). It is clear that the total energy also depends on \((\delta w', \delta w'' \text{ and } \delta \phi') \), so these variations are found by spatially differentiating for Eq.(20). Since the variations in nodal degrees of freedom \((\delta q_i) \) are discrete; the shape functions capture the spatial variation as in Eq. (21), where:

\[
\begin{bmatrix} \delta w'(s) \\ \delta w''(s) \end{bmatrix} = \begin{bmatrix} H_{w1}' & \delta w_A \\ H_{w2}' & \delta w_B \\ H_{w3}' & \delta w_E \end{bmatrix}, \quad \begin{bmatrix} \delta \phi'(s) \end{bmatrix} = \begin{bmatrix} H_{\phi1}' & \delta \phi_A \\ H_{\phi2}' & \delta \phi_M \\ H_{\phi3}' & \delta \phi_B \end{bmatrix}
\] (21)

ELEMENTAL MATRICES:

The expressions is integrated by parts, so the mass and stiffness matrices are identified by separating acceleration, and displacement terms, then the virtual energy expression in terms of the elemental matrices becomes:

\[
\delta \Pi = \int_{\tilde{\psi}} \sum_{i=1}^{N} \delta q_i^T \left(M_i \ddot{q}_i + K_i q_i \right) d\tilde{\psi} = 0
\] (22)

There are no structural contributions for damping in the preceding formulation to facilitate the simulation in vacuum cases, so there are no aerodynamic effects. The elemental mass and stiffness matrices can be partitioned to indicate contributions from flap bending and elastic torsion.
\[[M^b_i] = \begin{bmatrix} M^b_{ww} & M^b_{w\Phi} \\ M^b_{w\Phi} & M^b_{\Phi\Phi} \end{bmatrix}, \quad [K^{str}_i] = \begin{bmatrix} K^{str}_{ww} & K^{str}_{w\Phi} \\ K^{str}_{w\Phi} & K^{str}_{\Phi\Phi} \end{bmatrix}, \quad [K^{CF}_i] = \begin{bmatrix} K^{CF}_{ww} & K^{CF}_{w\Phi} \\ K^{CF}_{w\Phi} & K^{CF}_{\Phi\Phi} \end{bmatrix} \]

(23)

\[[K^b_i] = [K^{str}_i] + [K^{CF}_i] = \begin{bmatrix} K^b_{ww} & K^b_{w\Phi} \\ K^b_{w\Phi} & K^b_{\Phi\Phi} \end{bmatrix} \]

(24)

\[[M^b_{ww}] = \int_0^1 m H^T_w H_w \, ds, \quad [M^b_{w\Phi}] = \int_0^1 m K^m_{\Phi} H^T_w H_\Phi \, ds \] \hspace{1cm} \text{(mass terms)} \]

(25)

\[[M^b_{w\Phi}] = \int_0^1 m e_\theta \cos \Theta_0 H^T_w H_\Phi \, ds, \quad [M^b_{\Phi\Phi}] = \int_0^1 m e_\theta \cos \Theta_0 H^T_\Phi H_\Phi \, ds \]

The blade stiffness terms will have components due to both structural and centrifugal terms, where the stiffness terms due to structural properties are:

\[[K^{str}_{ww}] = \int_0^1 E_{\gamma \gamma} (\cos \Theta_0) H^T_w H^\prime_w \, ds, \quad [K^{str}_{w\Phi}] = \int_0^1 G J H^T_\Phi H_\Phi \, ds, \quad [K^{str}_{\Phi\Phi}] = [K^{str}_{w\Phi}] = 0 \]

(26)

Since the rotor blade rotates, the centrifugal forces contribute a significant stiffening effect, where the stiffness terms due to centrifugal loading are given in Eq. (27):

\[[K^{CF}_{ww}] = \int_0^1 \frac{m n^2}{2} (R^2 - x^2) H^T_w H^\prime_w \, ds, \quad [K^{CF}_{w\Phi}] = \int_0^1 m \Omega^2 (K^m_{\Phi} - K^m_{w\Phi}) \cos 2 \Theta_0 H^T_\Phi H_\Phi \, ds \]

\[[K^{CF}_{\Phi\Phi}] = \int_0^1 x m e_\theta \Omega^2 \cos \Theta_0 H^T_\Phi H_\Phi \, ds, \quad [K^{CF}_{w\Phi}] = \int_0^1 x m e_\theta \Omega^2 \cos \Theta_0 H^T_\Phi H_\Phi \, ds \]

(27)

In Eq. (27), the term \(\frac{m n^2}{2} (R^2 - x^2)\) is the axial loading due to centrifugal forces at the location \(x\), so in Eq. (27) \(x\) is the distance from the shaft axis to the point on the blade, where a centrifugal force will be at maximum value when \(x = 0\), and a centrifugal force will be zero at \(x = R\).

Assembly of Global Matrices:

The elemental degrees of freedom have been ordered according to flap or torsional motion, thus the order was: \((w_\alpha, w_\beta, \omega_\alpha, \omega_\beta, \Phi_\alpha, \Phi_\beta)\).

Via multiplying the elemental mass and stiffness matrices by transformation matrix \(t_r\) as in Eq. (28) to get a new reordered stiffness and mass matrices for assembly.

\[[t_r] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad [K_{el}] = [t_r] * [K^b_i] * [t_r] \quad , \quad [M_{el}] = [t_r] * [M^b_i] * [t_r] \]

(28)

Where \([K_{el}]\) is reordered stiffness matrix for \(i^{th}\) element and \([M_{el}]\) is reordered mass matrix for \(i^{th}\) element, so the global matrices is more straightforward if the degrees of freedom are reordered spatially, and the reorder result becomes: \((w_\alpha, \omega_\alpha, \Phi_\alpha, \Phi_\beta, w_\beta, \omega_\beta, \Phi_\beta)\), so the virtual energy becomes:

\[\delta \Pi = \int_{\Omega} \delta q^T (Mq + Kq) \, d\Omega = 0 \]

(29)

5555
Since the virtual displacements $\delta \mathbf{a}$ are arbitrary (between any two moments), so the integrand in Eq. (29) must be vanished, then the equation of motion becomes:

$$M \ddot{\mathbf{a}} + K \mathbf{a} = 0$$

(30)

So the modal parameters of a blade is considered (with centrifugal effect and without centrifugal effect) for the undamaged and damaged cases. For the undamped system of several degrees of freedom, the equations of motion expressed in matrix form become:

$$[\mathbf{M}_g][\ddot{\mathbf{u}}] + [\mathbf{K}_g]\{\mathbf{u}\} = \{0\}$$

(31)

By using the characteristic equation of the system, so the roots λ_i of the characteristic equation are called eigenvalues (Thomson W. T. 1975), so it is possible to find the eigenvectors from the adjoint matrix, and the complete free vibration solution is expressed also. The mode shape vectors have very important properties and known as the orthogonality properties which are described by (Meirovitch L. 1975), so the most common normalization scheme has been used in modal analysis to normalize the modes with respect to the mass matrix $[\mathbf{M}_g]$. The global displacement vector and matrices has been defined as:

$$\mathbf{q}_g = \sum_{i=1}^{N} \mathbf{q}_i, \quad \mathbf{M}_g = \sum_{i=1}^{N} \mathbf{M}_{ei}, \quad \mathbf{K}_g = \sum_{i=1}^{N} \mathbf{K}_{ei}$$

(32)

The summations represent the assembly procedure as shown in Fig. (6), where the matrix rows and columns has been reordered to facilitate assembly, then the structural mass and stiffness matrices has been banded. The assembly procedure can be easily modified to accommodate different types of rotor systems, and the assembly method which described in Fig. (5) assumes cantilevered boundary conditions between each element, so the boundary conditions between two elements states that the displacement, slope and twist are continuous at the nodes as:

$$\begin{align*}
 w_A(i) &= w_B(i - 1) \\
 w_A'(i) &= w_B'(i - 1) \\
 \phi_A(i) &= \phi_B(i - 1)
\end{align*}$$

(33)

Fig. (6) The assembly procedure
APPLICATION OF KINEMATICS BOUNDARY CONDITIONS:

Kinematic boundary conditions are applied to the global matrices, and the rotor model assumes that the blade is cantilevered at the root, so the degrees of freedom \((w, w' \text{ and } \phi) \) are constrained, and the corresponding rows and columns are removed from the FEM.

DAMAGE MODELS:

The distributed stiffness fault is modeled as a 10% and 20% reduction in blade bending and torsional stiffness, but for the crack form the damaged element of the beam is modeled with two nodes and two degrees of freedom (transverse displacement and slope) at each node, where the goal is to find a beam finite element that represents the effects of a crack in a beam as shown in Fig(8). In this study the finite element model for the cracked beam with an one-edge and non-propagating was proposed by Qian et al and also used by (Cacciola et al 2003), so a crack affects the bending stiffness of the blade only.

STIFFNESS MATRIX OF THE CRACKED ELEMENT:

An element stiffness matrix of a beam with a crack has been formulated and then a finite element model of a cracked beam has been developed. The strain energy of an element without a crack is:

\[
W^{(0)} = \frac{1}{2E} \int_0^l (M + Pz)^2 \, dz = \frac{1}{2E} (M^2l + \frac{P^2l^3}{3} + MPL^2)
\]

(34)

The flexibility coefficients are expressed by a stress intensity factor in the linear elastic range using Castigliano theorem, so the additional energy in the case of rectangular beam of height \(h \) and width \(b \) due to the crack can be written as:

\[
W^{(1)} = b \int_0^a \left(\frac{K_I^2 + K_{II}^2}{E_p} \right) \, da
\]

(35)

Where \(E_p = E \) for plane stress, \(E_p = E/(1 - \nu^2) \) for plane strain and \(a \) is the crack depth, as well as by taking into account only bending, so Eq. (35) leads to:

\[
W^{(1)} = b \int_0^a \left(\frac{K_{IM}^2 + K_{IP}^2}{E_p} \right) \, da
\]

(36)

\[
K_{IM} = \frac{6M}{b h^2} \sqrt{\pi a} F_I(S) \quad K_{IP} = \frac{3P}{b h^2} \sqrt{\pi a} F_I(S) \quad K_{IIp} = \frac{P}{b h} \sqrt{\pi a} F_{II}(S)
\]

(37)

Where \(K_{IM}, K_{IP} \) and \(K_{IIp} \) are the stress intensity factors for opening type and sliding type of cracks, due to \(M \) and \(P \) respectively, and \(F_I(S) \) and \(F_{II}(S) \) are the correction factor, see Fig.(7).

![Mode I: opening mode Mode II: sliding mode](image)

Fig. (7) The modes of loading

\[
F_I(S) = \sqrt{\frac{2}{\pi}} \tan \left(\frac{\pi S}{2} \right) \frac{1 - 0.923 + 0.199 \sin(\frac{\pi S}{2})}{\cos(\frac{\pi S}{2})} \quad F_{II}(S) = (3S - 2S^2)^{\frac{1 - 0.561S + 0.085S^2 + 0.185S^3}{\sqrt{1 - S^2}}}
\]

(38)

Where \(S \) is the ratio between crack depth and height of element \(a/h \), so the elements of the flexibility matrix \(C^{(0)}_{\phi} \) of the undamaged element can be derived as:

5557
\[c_{e}^{(0)} = \frac{\partial^2 W^{(0)}}{\partial P_i \partial P_j}; \quad i,j = 1,2 \quad P_1 = P, \quad P_2 = M \quad (39) \]

And the element of the additional flexibility matrix \(c_{e}^{(1)} \) are:

\[c_{e}^{(1)} = \frac{\partial^2 W^{(1)}}{\partial P_i \partial P_j}; \quad i,j = 1,2 \quad P_1 = P, \quad P_2 = M \quad (40) \]

Finally the total flexibility matrix for the element with a crack is:

\[c_e = c_{e}^{(0)} + c_{e}^{(1)} \quad (41) \]

From equilibrium conditions the following matrix has been found:

\[[T] = \begin{bmatrix} -1 & -L & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}^T \quad (42) \]

From the principle of virtual work the stiffness matrix of cracked element can be written as:

\[[K_c] = T c_{e}^{-1} T^T, \quad [K_u] = [K_{ww}] = T c_{e}^{(0)-1} [T] \quad (43) \]

Then the stiffness matrix of cracked element can be written as:

\[[K_c] = [K_{ww}] \quad (44) \]

![Fig. (8) Cracked cantilever](image1)

![Fig. (9) Equilibrium conditions of a cracked element](image2)

Then:

\[[K_{i}^{str}] = \begin{bmatrix} K_c & K_{str}^{w} & K_{str}^{w} \\ K_{str}^{w} & K_{str}^{str} & K_{str}^{str} \\ K_{str}^{str} & K_{str}^{str} & K_{str}^{str} \end{bmatrix}, \quad [K_{i}^{CF}] = \begin{bmatrix} K_{ww}^{CF} & K_{ww}^{CF} \\ K_{ww}^{CF} & K_{ww}^{CF} \end{bmatrix} \quad (45) \]

\[[K_{i}^{B_i}] = [K_{i}^{str}] + [K_{i}^{CF}] = \begin{bmatrix} K_{ww}^{b} & K_{ww}^{b} \\ K_{ww}^{b} & K_{ww}^{b} \end{bmatrix}, \quad [K_{i}^{*}] = [t_\phi] * [K_{i}^{B_i}] * [t_\phi] \quad (46) \]

Where \([K_{i}^{*}]\) is the reordered stiffness matrix for the \(i^{th}\) cracked element, and as mentioned that the damage does not alter the mass of the structure, so:
\[[M_{x_1}] = [M_{x_1}] \] (47)

DAMAGE EFFECT ON MODAL PARAMETERS:

The free vibration analysis of a blade with and without damage has been performed, so the cantilever beam is an idealized model for a blade which described. The stiffness and mass matrices will be used for a simple model of blade for analytical study. The following dimensions and material properties of the aluminum blade are listed in table (1).

Table (1) Material properties of the blade

<table>
<thead>
<tr>
<th>Blade length (R)</th>
<th>0.594 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade width (b)</td>
<td>0.037 m</td>
</tr>
<tr>
<td>Blade height (h)</td>
<td>0.0015 m</td>
</tr>
<tr>
<td>Modulus of elasticity (E)</td>
<td>62.1 GPa</td>
</tr>
<tr>
<td>Modulus of rigidity (G)</td>
<td>23.3 GPa</td>
</tr>
<tr>
<td>Mass density ((\rho))</td>
<td>2700 Kg/m^3</td>
</tr>
<tr>
<td>Poisson’s ratio ((\nu))</td>
<td>0.34</td>
</tr>
</tbody>
</table>

DAMAGE SCENARIOS:

20 damage scenarios has been investigated and summarized in table (2), where in 1st 10 scenarios the damage has been simulated by stiffness reduction of assumed elements, and in 2nd 10 scenarios the damage has been simulated in the form of crack, so the finite element model of the blade has been used for the stiffness matrix of the cracked element which described in chapter three. For the finite element analysis the blade has been divided into 20 elements to locate the damage accurately.

Table (2) Damage scenarios

<table>
<thead>
<tr>
<th>Damage scenarios</th>
<th>Damaged element</th>
<th>Stiffness reduction %</th>
<th>a/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1^{th}(0-0.0297)m</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>D2</td>
<td>1^{st}(0-0.0297)m</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>5^{th}(0.1188-0.1485)m</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>D4</td>
<td>5^{th}(0.1188-0.1485)m</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>D5</td>
<td>10^{th}(0.2673-0.297)m</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>D6</td>
<td>10^{th}(0.2673-0.297)m</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>D7</td>
<td>15^{th}(0.4158-0.4455)m</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>D8</td>
<td>15^{th}(0.4158-0.4455)m</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>D9</td>
<td>5^{th} & 10^{th}</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>D10</td>
<td>5^{th} & 10^{th}</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>1^{st}(0-0.0297)m</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>C2</td>
<td>1^{st}(0-0.0297)m</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>C3</td>
<td>5^{th}(0.1188-0.1485)m</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>C4</td>
<td>5^{th}(0.1188-0.1485)m</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>C5</td>
<td>10^{th}(0.2673-0.297)m</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>C6</td>
<td>10^{th}(0.2673-0.297)m</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>C7</td>
<td>15^{th}(0.4158-0.4455)m</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>C8</td>
<td>15^{th}(0.4158-0.4455)m</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>C9</td>
<td>5^{th} & 10^{th}</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>C10</td>
<td>5^{th} & 10^{th}</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>
ROTATION SPEED EFFECTS ON MODAL PARAMETERS:

The purpose of this section is to study the centrifugal effect on detection methods, so four rotation speed scenarios has been assumed for two speed of rotation as listed in table (3), where the first two scenarios associated with the stiffness reduction conditions and the second two scenarios associated with the crack conditions.

Table (3) Rotation speed scenarios

<table>
<thead>
<tr>
<th>Rotation speed scenarios</th>
<th>Damaged element</th>
<th>a/h</th>
<th>Stiffness reduction %</th>
<th>Ω rad/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD1</td>
<td>5th (0.1188-0.1485)m</td>
<td>-</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>SD2</td>
<td>5th (0.1188-0.1485)m</td>
<td>-</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>SC1</td>
<td>5th (0.1188-0.1485)m</td>
<td>0.2</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>SC2</td>
<td>5th (0.1188-0.1485)m</td>
<td>0.2</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

METHODS OF DAMAGE DETECTION:

These techniques commonly employed are based on vibration measurement, so in these methods the damage has been detected from alternations in dynamic parameters for healthy and damaged states, so these methods are:

1. Methods based on changes in frequencies and mode shapes like:
 a. Changes in Natural Frequencies.
 b. Eigenparameter Method.
2. Methods Based on The Mode Shape Curvature (Mode Shape Curvature Method).

A. CHANGE IN NATURAL FREQUENCIES:

Modal frequency shift was presented as a common damage indicator, this section explores the applications and limitations of using modal frequency shifts as damage indicators in rotating blade, where the eigenvalue problem of the undamaged and damaged structure has been estimated by using characteristic equation (Thomson 1975).

B. EIGENPARAMETER METHOD:

The eigenparameter method was proposed by (Yuen 1984), to detect and locate the damage in a cantilever beam, so the eigenequation for undamaged and damaged cantilever can be written as:

\[
([K_g] - \lambda_i [M_g])\{u_{N}^{(i)}\} = 0 ; \quad ([K_g^*] - \lambda_i^* [M_g^*])\{u_{N}^{(i)*}\} = 0
\] (48)

The eigenvalue is chosen in normalized form of damage, and the following eigenparameters has been estimated in the analysis:
\[
\{ \mathbf{U}_t \} = \frac{\{ \mathbf{u}_N^{(0)*} \}}{\lambda_t^*} - \frac{\{ \mathbf{u}_N^{(0)} \}}{\lambda_t}
\]
(49)

C. RESIDUAL ERROR METHOD IN THE MOVEMENT EQUATION:

The Residual error method in the movement equation was proposed by Genovese, and also used by (Brasilianno 2003). This method is used to identify a damage present in a structure and locate it by observing the error present in the movement equation:

\[
\mathbf{E}_{\text{r}} = [\mathbf{K}_g][\mathbf{u}^*] - ([\mathbf{M}_g][\mathbf{u}^*])[\mathbf{A}^*]
\]
(50)

\[
\mathbf{E}_{\text{r}} = [e_1 e_2 e_3 e_4 \ldots \ldots e_n]
\]
(51)

\[
[\mathbf{u}^*] = [\{ u_1^{(1)*} \} \{ u_2^{(2)*} \} \{ u_3^{(3)*} \} \ldots \ldots \{ u_n^{(n)*} \}]
\]
(52)

\[
[\mathbf{A}^*] = \begin{bmatrix}
\omega_{n1}^{2*} & 0 & \ldots & 0 \\
0 & \omega_{n2}^{2*} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \omega_{nn}^{2*}
\end{bmatrix}
\]
(53)

Each column of matrix \(\mathbf{E}_{\text{r}} \) is a vector corresponding to one mode shape and each value of this vector represents the error that occurs in some positions of the blade.

MODE SHAPE CURVATURE:

This method was proposed by (Pandey et al.1991), and also used by (Herrera 2005), so this method demonstrate that the absolute changes in mode shape curvature can be used as a good indicator for damage presence of FEM beam structures. The curvature values has been computed from the displacement mode shape by using the central difference approximation for mode \(i \) and DOF q:

\[
\{ u_N^{(i)*} \} = \{ u_N^{(i)} \}_{q-1} - 2\{ u_N^{(i)} \}_q + \{ u_N^{(i)} \}_{q+1} \\
\left\{ \Delta u_N^{(i)*} \right\} = \left\{ u_N^{(i)*} \right\} - \left\{ u_N^{(i)} \right\} \]
(54)

\[
\left\{ u_N^{(i)} \right\} = \left\{ \frac{u_N^{(i)}}{l_q^2} \right\} - 2\left\{ \frac{u_N^{(i)}}{l_q^2} \right\}_q + \left\{ \frac{u_N^{(i)}}{l_q^2} \right\}_{q+1}
\]
(55)

RESULTS AND DISCUSSION:

The present study is based on bending mode only, where the cracked element associated with the bending mode and only the translation degrees of freedom along the perpendicular axis to the elements (vertical DOF in the blade) has been considered, where the rotation degrees in an experimental work are not obtained because of the difficulty in their measurement. As well as the torsion mode affected by rotation speed less than bending mode, for these reasons this study is concentrated on the bending.
DAMAGE EFFECT ON MODAL PARAMETERS:

The first five natural frequencies for the blade at $\Omega = 0$ (rad/sec) and at $\Omega = 30$ (rad/sec) has been tabulated in tables (4) and (5) for assumed scenarios.

Table (4) Natural frequencies for the blade at $\Omega = 0$ (rad/sec)

<table>
<thead>
<tr>
<th>scenarios</th>
<th>1$^{\text{st}}$ mode</th>
<th>2$^{\text{nd}}$ mode</th>
<th>3$^{\text{rd}}$ mode</th>
<th>4$^{\text{th}}$ mode</th>
<th>5$^{\text{th}}$ mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present undamaged</td>
<td>20.6939</td>
<td>129.6868</td>
<td>363.1318</td>
<td>711.6263</td>
<td>1176.5</td>
</tr>
<tr>
<td>D1</td>
<td>20.4826</td>
<td>128.5971</td>
<td>360.5878</td>
<td>707.5026</td>
<td>1170.8</td>
</tr>
<tr>
<td>D2</td>
<td>20.2271</td>
<td>127.3253</td>
<td>357.7042</td>
<td>702.9457</td>
<td>1164.7</td>
</tr>
<tr>
<td>D3</td>
<td>20.5847</td>
<td>129.68</td>
<td>362.13</td>
<td>708.3462</td>
<td>1173.8</td>
</tr>
<tr>
<td>D4</td>
<td>20.4506</td>
<td>129.6717</td>
<td>360.9180</td>
<td>704.4352</td>
<td>1170.7</td>
</tr>
<tr>
<td>D5</td>
<td>20.6626</td>
<td>128.9964</td>
<td>363.0529</td>
<td>708.1019</td>
<td>1175.5</td>
</tr>
<tr>
<td>D6</td>
<td>20.6236</td>
<td>128.1537</td>
<td>362.956</td>
<td>703.8758</td>
<td>1174.3</td>
</tr>
<tr>
<td>D7</td>
<td>20.6908</td>
<td>129.3639</td>
<td>360.8984</td>
<td>709.054</td>
<td>1176.2</td>
</tr>
<tr>
<td>D8</td>
<td>20.6868</td>
<td>128.9621</td>
<td>358.1819</td>
<td>706.01</td>
<td>1175.8</td>
</tr>
<tr>
<td>D9</td>
<td>20.6272</td>
<td>129.3548</td>
<td>362.6206</td>
<td>708.3669</td>
<td>1174.7</td>
</tr>
<tr>
<td>D10</td>
<td>20.5539</td>
<td>128.9901</td>
<td>362.0612</td>
<td>704.8110</td>
<td>1172.9</td>
</tr>
<tr>
<td>C1</td>
<td>20.6851</td>
<td>129.6410</td>
<td>363.0250</td>
<td>711.4557</td>
<td>1176.3</td>
</tr>
<tr>
<td>C2</td>
<td>20.6592</td>
<td>129.5061</td>
<td>362.7112</td>
<td>710.9558</td>
<td>1175.6</td>
</tr>
<tr>
<td>C3</td>
<td>20.6894</td>
<td>129.6867</td>
<td>363.0910</td>
<td>711.4889</td>
<td>1176.4</td>
</tr>
<tr>
<td>C4</td>
<td>20.6761</td>
<td>129.6865</td>
<td>362.9703</td>
<td>711.0838</td>
<td>1176.1</td>
</tr>
<tr>
<td>C5</td>
<td>20.6926</td>
<td>129.6581</td>
<td>363.1296</td>
<td>711.4793</td>
<td>1176.5</td>
</tr>
<tr>
<td>C6</td>
<td>20.6888</td>
<td>129.5736</td>
<td>363.1229</td>
<td>711.0457</td>
<td>1176.4</td>
</tr>
<tr>
<td>C7</td>
<td>20.6938</td>
<td>129.6735</td>
<td>363.0391</td>
<td>711.5199</td>
<td>1176.5</td>
</tr>
<tr>
<td>C8</td>
<td>20.6934</td>
<td>129.6344</td>
<td>362.7652</td>
<td>711.2064</td>
<td>1176.5</td>
</tr>
<tr>
<td>C9</td>
<td>20.6881</td>
<td>129.6581</td>
<td>363.0887</td>
<td>711.3419</td>
<td>1176.4</td>
</tr>
<tr>
<td>C10</td>
<td>20.671</td>
<td>129.5733</td>
<td>362.9615</td>
<td>710.5092</td>
<td>1175.9</td>
</tr>
<tr>
<td>Frequency decreasing%</td>
<td>0-2.3</td>
<td>0-1.85</td>
<td>0-1.51</td>
<td>0-1.23</td>
<td>0-1.01</td>
</tr>
</tbody>
</table>

Table (5) Natural frequencies for the blade at $\Omega = 30$ (rad/sec)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>1$^{\text{st}}$ mode</th>
<th>2$^{\text{nd}}$ mode</th>
<th>3$^{\text{rd}}$ mode</th>
<th>4$^{\text{th}}$ mode</th>
<th>5$^{\text{th}}$ mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undamaged</td>
<td>38.4810</td>
<td>150.5482</td>
<td>384.6151</td>
<td>734.0786</td>
<td>1199.6</td>
</tr>
<tr>
<td>D1</td>
<td>38.2927</td>
<td>149.5488</td>
<td>382.1778</td>
<td>730.0604</td>
<td>1194</td>
</tr>
<tr>
<td>D2</td>
<td>38.0690</td>
<td>148.3912</td>
<td>379.4244</td>
<td>725.6270</td>
<td>1188</td>
</tr>
<tr>
<td>D3</td>
<td>38.4343</td>
<td>150.5407</td>
<td>383.7020</td>
<td>730.9727</td>
<td>1196.9</td>
</tr>
<tr>
<td>D4</td>
<td>38.3774</td>
<td>150.5314</td>
<td>382.5917</td>
<td>727.2765</td>
<td>1193.9</td>
</tr>
<tr>
<td>D5</td>
<td>38.4732</td>
<td>149.9810</td>
<td>384.5330</td>
<td>730.7424</td>
<td>1198.5</td>
</tr>
<tr>
<td>D6</td>
<td>38.4635</td>
<td>149.2921</td>
<td>384.4325</td>
<td>726.7488</td>
<td>1197.3</td>
</tr>
<tr>
<td>D7</td>
<td>38.4804</td>
<td>150.2511</td>
<td>382.4578</td>
<td>731.6352</td>
<td>1199.3</td>
</tr>
<tr>
<td>D8</td>
<td>38.4795</td>
<td>149.8832</td>
<td>379.8411</td>
<td>728.7463</td>
<td>1198.9</td>
</tr>
<tr>
<td>D9</td>
<td>38.4550</td>
<td>150.2743</td>
<td>384.1418</td>
<td>730.9915</td>
<td>1197.8</td>
</tr>
<tr>
<td>D10</td>
<td>38.4266</td>
<td>149.9741</td>
<td>383.6247</td>
<td>727.6265</td>
<td>1195.9</td>
</tr>
<tr>
<td>C1</td>
<td>38.4732</td>
<td>150.5061</td>
<td>384.5129</td>
<td>733.9127</td>
<td>1199.3</td>
</tr>
<tr>
<td>C2</td>
<td>38.4499</td>
<td>150.3824</td>
<td>384.2125</td>
<td>733.4265</td>
<td>1198.7</td>
</tr>
<tr>
<td>C3</td>
<td>38.4791</td>
<td>150.5480</td>
<td>384.5776</td>
<td>733.9484</td>
<td>1199.4</td>
</tr>
<tr>
<td>C4</td>
<td>38.4734</td>
<td>150.5476</td>
<td>384.4669</td>
<td>733.5645</td>
<td>1199.1</td>
</tr>
<tr>
<td>C5</td>
<td>38.4807</td>
<td>150.5246</td>
<td>384.6126</td>
<td>733.9394</td>
<td>1199.5</td>
</tr>
<tr>
<td>C6</td>
<td>38.4798</td>
<td>150.4550</td>
<td>384.6053</td>
<td>733.5288</td>
<td>1199.4</td>
</tr>
<tr>
<td>C7</td>
<td>38.4810</td>
<td>150.5360</td>
<td>384.5255</td>
<td>733.9777</td>
<td>1199.6</td>
</tr>
<tr>
<td>C8</td>
<td>38.4809</td>
<td>150.4999</td>
<td>384.2606</td>
<td>733.6803</td>
<td>1199.5</td>
</tr>
</tbody>
</table>
The shifting in natural frequencies at (Ω=30 rad/sec) is smaller than the shift at (Ω=0 rad/sec) where the centrifugal effect stiffening the blade so the effect of damage becomes smaller, so the indication for damage presence is clearest at (Ω=0 rad/sec). It is clear also that the maximum shifting occurred at the scenario D2 (clearest scenario as it has been mentioned) for the first five natural frequencies where D2 has the severest damage value and the nearest damaged element to the fixed end.

DAMAGE SEVERITY EFFECT:

The first three natural frequencies have been observed for variant damage severity (from 5% to 60% stiffness reduction and crack depth) at 1st element. It was observed that 1st natural frequencies decrease when the damage severity (stiffness reduction, crack depth) increase, and it was observed also that the, so it is clear also from Fig.(10) that the natural frequencies affected by stiffness reduction more than crack.

ROTATION SPEED EFFECT ON NATURAL FREQUENCIES FOR UNDAMAGED BLADE:

In order to investigate the effect of the rotation speed nine values have been used (10-90) rad/sec, and it was clear from Fig.(11) that the natural frequencies increase by rotational speed increasing where the centrifugal force stiffening the blade (due to presence of K^{CF} terms).

CHANGES IN NATURAL FREQUENCIES:

The measurement of natural frequencies is the first method to detect the damage, so the results have been tabulated in tables(4)and (5). It is clear from these results that the shifting in natural frequencies

<table>
<thead>
<tr>
<th></th>
<th>Frequency decreasing%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9</td>
<td>0-1.07</td>
</tr>
<tr>
<td>C10</td>
<td>0-1.43</td>
</tr>
<tr>
<td></td>
<td>0-1.34</td>
</tr>
<tr>
<td></td>
<td>0.013-1.15</td>
</tr>
<tr>
<td></td>
<td>0-0.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>38.4721</th>
<th>150.4545</th>
<th>384.4571</th>
<th>733.0145</th>
<th>1199</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9</td>
<td>38.4788</td>
<td>150.5245</td>
<td>384.5751</td>
<td>733.8092</td>
<td>1199.4</td>
</tr>
<tr>
<td></td>
<td>38.4721</td>
<td>150.4545</td>
<td>384.4571</td>
<td>733.0145</td>
<td>1199</td>
</tr>
</tbody>
</table>

Fig.(10) Relative natural frequencies and relative damage severity and crack depth (1st mode)

Fig. (11) The relation between natural frequencies and rotation speed
is insufficient detection indicator especially at $\Omega=30$ (rad/sec), so changes in natural frequencies being more small when the damaged zone shifted toward free end.

EIGENPARAMETER METHOD:

For the first mode the slope starts at the damaged location and this slope becomes steeper when the damaged location shifted closer to the fixed end, where the maximum bending has been occurred at this point and when the damage being more sever as shown in Fig.(12)and(13). This method is efficient for damage identification for the cases of single damages. In the cases of multiple damage the method is ineffective, where this method is able to locate the damage at one location only, as shown in Fig.(14) and (15).

RESIDUAL ERROR METHOD IN THE MOVEMENT EQUATION:

Error has been presented in the movement equation for damage scenarios and for first three modes as shown in Fig.(16) to Fig.(19), where a positive peak has been displayed at the damaged regions clearly and precisely for all investigated modes and scenarios (single and multiple damage). It is clear that the indication for damage presence will be perceptible when the damage being more sever and closer to the fixed end where the maximum bending has been occurred at this point.
MODE SHAPE CURVATURE:

The absolute differences between mode shape curvature of healthy and defected blade for the damage scenarios are plotted. For the cases of single damage the maximum difference for each mode shape curvature has been occurred at damaged zone as shown in Fig.(21) and (22) except scenarios (D1,D2,C1 and C2) where the differences of mode shape curvature are localized near the damaged zone (not at the damaged zone) and it is a difficult task to detect the damage which locates close to the fixed end as in Fig(20). For the cases of multiple damage it has been able to locate the damage at two zone, see Fig.(23)
The effect of rotation speed on detection methods has been investigated for rotation speed scenarios which listed in table (3) for the first mode only because it is the clearest mode to present the facts as shown in Fig. (24-26).

The effect of rotation speed has been investigated on the first method (as in tables(4) and (5)) and on the other used methods at two values \(\Omega = (0 \text{ and } 30) \) rad/sec, as shown in Fig.(24-26). It is clear that the identification for damage presence under non-rotating conditions noticeable, compared with the identification under rotating conditions, where the centrifugal effect stiffening the blade.
CONCLUSIONS

The main conclusions of the present work according to the results may be summarized as:

- The shifting at natural frequencies only are insufficient to detect the damage, so these frequencies affected by crack depth and stiffness reduction imperceptibly, specially when the damage located far from fixed end, as well as the decreasing in natural frequencies only can not locate the damage.

- The maximum decreasing occurred for the natural frequencies at the severest damage value and the nearest damaged element to the fixed end, and these frequencies decrease with damage accumulation.

- For the same values of damage percent and crack ratio, the indication for the damage percent case is clearer than the indication for the crack ratio case.

- The natural frequencies increase when the rotational speed increasing, where the centrifugal force stiffening the blade, so the indication for damage presence under non-rotating conditions is clearer than the indication under rotating conditions.

- Residual Error Method in The Movement Equation is very efficient for damage identification, where this method has the ability to identify the damage successfully for the cases of single and multiple damage, so it is effective method to detect and locate the damage.
REFERENCES