Abstract

The estimation of the parameters of Two Parameters Gamma Distribution in case of missing data has been made by using two important methods: the Maximum Likelihood Method and the Shrinkage Method. The former one consists of three methods to solve the MLE non-linear equation by which the estimators of the maximum likelihood can be obtained: Newton-Raphson, Thom and Sinha methods. Thom and Sinha methods are developed by the researcher to be suitable in case of missing data. Furthermore, the Bowman, Shenton and Lam Method, which depends on the Three Parameters Gamma Distribution to get the maximum likelihood estimators, has been developed. A comparison has been made between the methods in the experimental aspect to find the best method through simulation by using the Monte Carlo Method. Several experimentations have been made by using the important statistical measure: Mean Square Error (MSE).
إن أغلب طرائق التقدير الإحصائية تفترض توفر بيانات نماذج المشاهدات للعينات المدوسة، ولكن في الكثير من ظواهر الطبيعية، والاقتصادية، والاجتماعية وغيرها تتعذر على جمع بيانات هذه الظواهر إلى حد كبير بسبب عدم توفر الإمكانات، ومنها ما يكون متعدد بسبب انتقال التسجيل أو المخاطرة. ولهذا السبب أخذنا نستخدم عدة طرائق المقاربة بناء على التصورات النموذجية، وخبرتهن في عقل والتي يتبعها نقل البيانات غير القابلة للنشر.

ومهما اختلفت ظواهر الفقدان وتحددنا إحدى هذه المشكلات الخاص بها، فإن هذه الحالة يجب معالجة هذه المشكلة من خلال استخدام الطرائق الإحصائية التي تتعلق بالبيانات غير القابلة للنشر.

وفي هذه الحالة يجب معالجة هذه المشكلة من خلال استخدام الطرائق الإحصائية التي تتعلق بالبيانات غير القابلة للنشر. إحدى هذه الطرائق الإحصائية هو استخدام متعدد من البيانات أو أنماط ملحوظة في بيانات نماذج المشاهدات المشتركين، وتراجع معظم أسباب الفقدان إلى أن عدد الوقت صغير للنظام، وليس للروابط المفقودة في النمذجة، فضلا عن أن مسؤولية أنواع البيانات هي سبب أن تصبح النموذج أو الأجهزة حين نقل البيانات وليس تسجيل البيانات. وعليه في حالة وجود فقديات في تسجيل أوقات أوقات الفشل المفقودة، وفي حالة كون البيانات المتاحة متعددة الكلي لمراقبة الفشل والعد التجميعي لساعات الفشل، وتعدد الإشكال من غير الممكن الملاحظة لتسحيب وأوقات الفشل المفقودة، وبالتالي من غير الممكن استخدام الطرائق الموجهة في التقدير. لذلك عم بعض الباحثين على معالجة هذه المشكلة من خلال تطور واختراق طرق لتقدير المعدات ونماذج الملاعيب باستخدام هذه النوع من البيانات غير القابلة للملاحظة، ولنفترض أن نطور أوقات الفشل.

كما ذكر الملمحيين في حالة وجود أوقات فشل مفقودة.

وقد تم في هذا البحث دراسة أخذ أوقات التوزيعات الواسعة الاستخدام والتطبيق في مجال المعالجة والنظرية للبيانات، وذلك ما يسمى كنموذج توزيع أوقات الفشل في النظام الكهربائي، والميكانيكي، والكهربائي، وهو توزيع كمليت الملمحيين، إذ تقدر المعالجات لهذا التوزيع في حالة البيانات المفقودة وذلك باستخدام أوقات من الطرائق المهمة، والتي تضمنت ثلاث طرق يتم الحصول عليها، على ثلاثة مقدرات للكثير الأعظم، وهما:

طريقة متعددة نموذجات توزيع، رأسين وطرق بينهم تم تطويرها في هذا البحث لتстанавف حالة البيانات المفقودة، وضماناً تتوزيع طرائق أخرى تعمد على (Sinha) تطوير طريقة أخرى تعمد على (Thom) مقارنة بين أفضل هذه الطرق في الجانب المتأخر باستخدام طريقة (Shrinkage Method) وطريقة التقصي (Bowman, Shenton and Lam) إجراء عدة تجارب مستخدمين أحد المقدرات الإحصائية المهمة (Monte Carlo) وهو متوسط مربعات النقطة (MSE) وتم الحصول بشكل عام على أن طريقة (Sinha) الأكثر من بين هذه الطرق لتقدير المعالجات (k,λ) لمثلها درجة مربعات خطأ مقارنة بالأطراف الأخرى.

2. تقدير معلومات توزيع كمليت الملمحيين في حالة البيانات المفقودة.
Distribution of Cumulative Time- to- Failure

لغرض إيجاد مقدرات الإمكان (Likelihood Function) الأعظم (MLEs) (Maximum Likelihood Estimation) يعتمد على معلومات التوزيع (k, λ) والمشاهدة Tij وقتم فشل ووقت الفشل غير المعرفة.

إذ أن:

r: تمثل عدد المراة لتأتي رمزم

Tij: تمثل وقت الانتشار التجميعي رقم j الذي يحتوي بالتأكيد r من عناصر الفشل، أي أن:

\[T_{ij} = X_1 + X_2 + \ldots + X_r; j=1,2,\ldots,n_r \]

وعليه إذا كانت أوقات الفشل ممثلة بالمتغي Xj تتبع توزيع كاما, فان Tij تنبع توزيع كاما, عندما j ثابت, وكما يلي:

\[X_i \sim \text{i.i.d gamma} (k, \lambda) \]

\[T_{ij} = \sum_{i=1}^{r} X_i \]

\[T_{ij} \sim \text{gamma} (rk, \lambda) ; r = 1,2,\ldots,m \]

\[j = 1,2,\ldots,n_r \]

هذا توزيع عشوائي يعتمد على تحديد r، وإذا كان Tij متغير عشوائي فان اوقات الفشل التجميعية المرتبطة بالمتغير r، وعلى أنه دالة الكثافة الإحتمالية للمتغير Tij هي دالة الكثافة الإحتمالية الشرطية للمتغير T، وان:

\[f_{T_{ij}} (t) = f_T (t \; \mid \; r) = \frac{\lambda^r t^{r-1} \exp(-\lambda t)}{\Gamma(rk)} \]

(1)

\[f_T (t) = \sum_{r=1}^{\infty} f_T (t \; \mid \; r) \Pr(R = r) \]

إذ أن: هو احتمال أن البيانات المسجلة التي يتم اختيارها عشوائيا تحتوي بالتأكيد r من حالات الفشل.

إذا كان لدينا مجموعة من البيانات المسجلة عددها N لكل من البيانات المسجلة N فيهما r، وننتمي Tij من مجتمع غير معروف عنده يكون النموذج Mixture Model المستخدم هو النموذج المختلط.
 وإن دالة الكثافة الاحتمالية للمجتمع غير المتجانس يعبر عنها بمجموع موزون خاص بدولة الكثافة الاحتمالية. والأوزان تعبر عن احتمال أن الاختيار العشوائي لعضو من المجتمع هو من مجتمع جزئي. وفي هذا البحث يتم تمييز المجتمعات الجزئية بعدد حالات الفشل ضمن مجموعة البيانات المندمجه، أما الأوزان فهي احتمال أن المشاهدة Tij التي يتم اختيارها عشوائياً من بيانات

\[n_r \]

، مسجلاً عددها N تحتوي r من حالات الفشل، وإن الاحتمال هو

\[f_T(t) = \sum_{r=1}^{\infty} \frac{\lambda^r t^{r-1} \exp(-\lambda t)}{\Gamma(rk)} \Pr(R = r) \]

وبالتعويض عن

\[\Pr(R=r) \]

إذ أن:

- n_r تمثل عدد البيانات المسجلة التي تتضمن بالتأكيد r من حالات الفشل التي تتبع توزيع كاما (rk, \lambda, r = 1,2,....m).
- n = (n_1, n_2, ..., n_m) تمثل متنه من العناصر الذي يعبر عن عدد المشاهدات لكل مجتمع جزئي.
- m = max {r \mid n_r > 0} تمثل أكبر عدد من مرات الفشل لأي من البيانات المسجلة ضمن مجموعة البيانات.

\[N = \sum_{r=1}^{m} n_r \]

ويمكن إيجاد العدد الكلي لمرات الفشل المرتبة بالبيانات المسجلة البالغ عددها N كالآتي:

\[M = \sum_{r=1}^{m} r n_r \]

اما متوسط وقت الفشل \(\bar{t} \) فيتم حسابه على وفق الصيغة الآتية:

\[\bar{t} = \sum_{r=1}^{m} \sum_{j=1}^{n_r} T_{rj} / M \]
التقدير بطريقة الإمكان الأعظم:

\[
E(k, \lambda) = \max \left\{ \pi \prod_{r=1}^{m} \pi \frac{1}{N} \sum_{i=1}^{n_r} \frac{n_r \lambda^{y_{ik}} T_{rj}^{k-1} \exp\left(-\lambda T_{rj}\right)}{\Gamma(i_k)} \right\}
\]

ولكن أحد البدائل ودالة الإمكان الفضيلة تطور من خلال ملاحظة أن المجتمعات الجزئية تم تعرفها بوضوح ضمن المجتمع الكلي. وعلى هذا فإن الطريقة البديلة يعبر عنها بطريقتي الشرطية للمتغيرات من المعادلة (1):

\[
L(k, \lambda) = \prod_{r=1}^{m} \prod_{j=1}^{n_r} f_r(k, \lambda \setminus T_{rj}) = \exp\left(-\lambda \sum_{r=1}^{m} \sum_{j=1}^{n_r} T_{rj}\right) \prod_{r=1}^{m} \prod_{j=1}^{n_r} \frac{\lambda^{r_{ik}} T_{rj}^{r-1}}{\Gamma(r_k)}
\]

وبأخذ اللوغاريتم الطبيعي لطرفي المعادلة (7) نحصل على:

\[
LnL(k, \lambda) = -\lambda M \hat{t} + M k \ln \lambda + k \sum_{r=1}^{m} \sum_{j=1}^{n_r} r \ln T_{rj} - \sum_{r=1}^{m} \sum_{j=1}^{n_r} \ln T_{rj} - \sum_{r=1}^{m} n_r \ln \Gamma(r_k)
\]

وإيجاد القيمة التقديرية لكل من \(k\) و\(\lambda\) التي تعبر عن الدالة (L) نجد المشتقة الجزئية للدالة (LnL) لكل من \(k\) و\(\lambda\) ومساواة هذه المشتقات الجزئية بالصفر فتتحصل على المعادلات الآتية:

\[
\lambda : \frac{\partial}{\partial \lambda} LnL(k, \lambda) = -M \hat{t} + \frac{M k}{\lambda} = 0
\]

\[
\hat{\lambda} = \frac{k}{t}
\]

\[
k : \frac{\partial}{\partial k} LnL(k, \lambda) = M \ln \hat{\lambda} + \sum_{r=1}^{m} \sum_{j=1}^{n_r} r \ln T_{rj} - \sum_{r=1}^{m} n_r \psi(r_k)
\]
إذ أن:

\[
\psi(rk) = \frac{\Gamma'(rk)}{\Gamma(rk)}
\]

[3] **Digamma Function**

وتسمى بـ

\[\psi(rk)\]

بدالة كاما الثانوية

وبتعويض قيمة \[\hat{k}\] من المعادلة (10) في (11) نحصل على معادلة بديلة \[\hat{k}\] :

\[
\sum_{r=1}^{m} r n_r \psi(\hat{r}k) - MLn\hat{k} = \sum_{r=1}^{m} \sum_{j=1}^{n_r} r LnT_{rj} - MLn\tilde{t}
\]

(17)

وبفرض أن:

\[k' = \sum_{r=1}^{m} \sum_{j=1}^{n_r} r LnT_{rj} - MLn\tilde{t}\]

(18)

وتعويذه في المعادلة (12) نحصل على:

\[
\sum_{r=1}^{m} r n_r \psi(\hat{r}k) - MLn\hat{k} = k'
\]

إذ يتم استخدام الصيغة التقريبية العامة لدالة كاما الثانوية (12) التي تعطى على وفق الصيغة الأتية:

\[
\psi(rk) = Ln(rk) - \frac{1}{2(rk)} - \frac{1}{12(rk)^2} + \frac{1}{120(rk)^4} - \frac{1}{252(rk)^6} + ...
\]

(14)

ولحل الصيغتين (13) و(14) لإيجاد مقدرات الإمكان الأعظم للكثير من \[\lambda\] سيم استخدام ثلاثة طرق قبل الحصول على ثلاث مقدرات للإمكان الأعظم وهذه الطرق هي:

Newton-Raphson Method

2-2-1: طريقة نيوتون-رافسون:

بتطبيق أسلاوب نيوتون-رافسون لأجل حل المعادلات غير الخطية يتم إيجاد قيمة \[\hat{k}\] عند التكرار i وذلك باستخدام الصيغة الأتية:

\[
\hat{k}_i = \hat{k}_{i-1} - \frac{g(\hat{k}_{i-1})}{g'(\hat{k}_{i-1})}
\]

(15)

ومن خلال الصيغة (13) غير الخطية فإن الدالة

\[g(\hat{k}) = \sum_{r=1}^{m} r n_r \psi(\hat{r}k) - MLn(\hat{k}) - k'
\]

(16)
وعليه فان:

\[\hat{k}_i = \frac{\sum_{r=1}^{m} rn_r \psi(r\hat{k}_{i-1}) - MLn\hat{k}_{i-1} - k'}{\sum_{r=1}^{m} r^2 n_r \psi'(r\hat{k}_{i-1}) - M/\hat{k}_{i-1}} \]

(17)

وسيتم لقيمة المقدرات وفق هذه الطريقة بالرمز \(\hat{\lambda}_n \) ، إذ نحصل على \(\hat{\lambda}_n \) بالتعويض عن \(\hat{k}_n \) بالمعادلة (10):

\[\hat{\lambda}_n = \frac{\hat{k}_n}{\tilde{t}} \]

(18)

Development of Thom Method : Thom

2-2-2: تطوير طريقة Thom استخدمت صيغة تقريبية لدالة كاما الثنائية وذلك بالاعتماد على الصيغة العامة التقديرية لدالة كاما الثنائية (عندما تكون \(\alpha \) كبيرة):

\[\psi(\hat{\alpha}) \approx \ln(\hat{\alpha}) - \frac{1}{2\hat{\alpha}} - \frac{1}{12\hat{\alpha}^3} \]

(19)

لإيجاد الصيغة التقريبية لتقديرات الإمكان الأعظم لمعلمات توزيع كاما ذي المعلمتين (\(\alpha, \theta \))،

في حالة البيانات الكاملة وتوصل إلى [4]:

\[\hat{\alpha} = \frac{1 + \sqrt{(1+4y/3)}}{4y}, \quad \hat{\theta} = \frac{\tilde{t}}{\hat{\alpha}} \]

(20)

أما في هذا البحث تم اقتراح تطوير صيغة تستخدم في حالة البيانات المفقودة بالاعتماد على تقريب Thom ذو الصيغة (19) وكالآتي:

\[\psi(r\hat{k}) \approx \ln(r\hat{k}) - \frac{1}{2(r\hat{k})} - \frac{1}{12(r\hat{k})^2} \]

(21)

وبالتعويض عن (21) في الصيغة (13) لطريقة الإمكان الأعظم نحصل على:

\[\sum_{r=1}^{m} rn_r \left[\ln(r\hat{k}) - \frac{1}{2(r\hat{k})} - \frac{1}{12(r\hat{k})^2} \right] - MLn\hat{k} = k' \]

\[\sum_{r=1}^{m} rn_r \ln(r) - \frac{N}{2\hat{k}} - \sum_{r=1}^{m} \frac{n_r / r}{12\hat{k}^2} = k' \]
وبحل المعادلة أعلاه بالدستور:

\[
\frac{N + \sqrt{N^2 + \frac{4}{3} \left(\sum_{r=1}^{m} n_r \ln(r) - k' \right) \left(\sum_{r=1}^{m} n_r / r \right)}}{4 \left(\sum_{r=1}^{m} n_r \ln(r) - k' \right)}
\]

والتعويض عن \(\hat{k}' \) في (10) نحصل على:

\[
\hat{\lambda}_t = \frac{\hat{k}'_t}{\tilde{t}}
\]

(22)

Development of Sinha Method: Sinha تطوير طريقة Sinha

اعتمد التقرير الآتي لدالة كاما الثنائية (عندما تكون كَبِيرة) على:

\[
\psi(\hat{\alpha}) \approx \ln \hat{\alpha} - \frac{1}{2\hat{\alpha}}
\]

لإيجاد الصيغة التقريرية لتقديرات الإمكان الأعظم لمعلمات توزيع كاما ذي المعلمتين في حالة البيانات الكاملة وتوصيل الي:

\[
\hat{\alpha} = \frac{1}{2\tilde{y}} , \quad \hat{\theta} = \frac{\tilde{t}}{\hat{\alpha}}
\]

أما في هذا البحث تم اقتراح تطوير صيغة تستخدم في حالة البيانات المفقودة بالاعتماد على تقريب

\[
\psi(r\hat{k}) = \ln(r\hat{k}) - \frac{1}{2r\hat{k}}
\]

(26)
وبالتعويض عن (21) في الصيغة (13) لطريقة الإمكان الأعظم نحصل على:

\[
\sum_{r=1}^{m} rn_r [Ln(r\hat{k}) - \frac{1}{2r}] - MLn\hat{k} = k'
\]

\[
\sum_{r=1}^{m} rn_r Ln(r) + MLn(\hat{k}) - \sum_{r=1}^{m} \frac{rn_r}{2r} - MLn\hat{k} = k'
\]

\[
2k \sum_{r=1}^{m} rn_r Ln(r) - 2k'\hat{k} = N
\]

\[
\hat{k}_s = \frac{N}{2 \left[\sum_{r=1}^{m} rn_r Ln(r) - k' \right]}
\]

(27)

والتعويض عن \(\hat{k}_s \) في الصيغة (10) نحصل على:

\[
\hat{\lambda}_s = \frac{\hat{k}_s}{t}
\]

(28)

فضلا عن الطرق السابقة هناك طريقة أخرى تم تطويرها لغرض تقدير المعلمات \(\lambda \) و \(k \) لتوزيع كاما ذي المعلمين في حالة البيانات المفقودة وذلك باستخدام أسلوب الإمكان الأعظم في التقدير وهي:
Development of (Bowman, Shenton and Lam) Method

case study of problems from the three-parameter distribution (Bowman, Shenton and Lam) in which the parameters of the distribution (a, 3) are estimated using the maximum likelihood method. The estimated values of the parameters are:

\[
\hat{a} = \left(\frac{1}{t}\right) - \frac{1}{(1/t)-1}
\]

\[
\hat{\theta} = t - \left(\frac{1}{t}\right)^{-1}
\]

As noted in the research, the researchers proposed using the three-parameter distribution to estimate parameters, and the method is used in the case study. The estimated values of the parameters of the distribution (a, 3) are:

\[
f_X(x) = \frac{\lambda^k}{\Gamma(k)} (x-\theta)^{k-1} e^{-(x-\theta)} I_{(\gamma,\infty)}(x)
\]

where \(k, \lambda > 0, \gamma \geq 0\)

(30)

And to find the maximum likelihood estimate of the parameters of the distribution (a, 3), the moment generating function is calculated, which is:

\[
\mu_X(t) = E e^{Xt}
\]

\[
= \int_{-\infty}^{\infty} e^{Xt} \frac{\lambda^k}{\Gamma(k)} (x-\theta)^{k-1} e^{-(x-\theta)} dx
\]

\[
\mu_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^k e^{xt}
\]

(31)

And for the estimate of the parameters of the distribution (a, 3):

\[
\mu_Z(t) = E e^{Zt}
\]

\[
= E e^{(X_1 + X_2 + \ldots + X_r) t}
\]

\[
= [\mu_{X_1}(t)][\mu_{X_2}(t)][\ldots][\mu_{X_r}(t)]
\]

(31)
و عليه فإن الدالة المولدة للعزوم للمتغير العشوائي

\[T_{rj} = \sum_{i=1}^{r} X_i \]

تعطى كالتالي:

\[\mu_Z(t) = \left(\frac{\lambda}{\lambda - t} \right)^{rk} e^{r \gamma} \]

(32)

ومن خلال الصيغة السابقة فإن دالة الكثافة الاحتمالية للمتغير

\[f_{T_r}(t) = f_T(t \setminus r) = \frac{\lambda^r}{\Gamma(rk)} (t - r \gamma)^{rk-1} e^{-\lambda (t - r \gamma)} ; t \geq \gamma \]

(33)

ومن خلال الصيغة أعلاه تكون دالة الإمكان بالشكل:

\[L(k, \lambda, \gamma) = \prod_{r=1}^{m} \prod_{j=1}^{n_r} f_T(k, \lambda, \gamma \setminus T_{rj}) \]

\[= \exp \left[-\lambda \sum_{r=1}^{m} \sum_{j=1}^{n_r} (T_{rj} - r \gamma) \right] \prod_{r=1}^{m} \prod_{j=1}^{n_r} \frac{\lambda^r}{\Gamma(rk)} (T_{rj} - r \gamma)^{rk-1} \]

(34)
ولتشتيح المعادلات في دالة الإمكان نجد المشتقة الجزئية للدالة (LnL) لكل معلومة من معلومات توزيع كاملي ذك المعادلات الثلاث ومساويّة هذه المشتقات الجزئية بالصفر فنحصل على المعادلات الآتية:

\[
\frac{\partial \text{LnL}}{\partial k} = M \text{Ln} \hat{\lambda} + \sum_{r=1}^{m} \sum_{j=1}^{n_r} r \text{Ln}(T_{rj} - r \hat{\gamma}) - \sum_{r=1}^{m} r n_r \psi(r \hat{k}) = 0
\]

\[
\frac{\partial \text{LnL}}{\partial \lambda} = -\sum_{r=1}^{m} \sum_{j=1}^{n_r} (T_{rj} - r \hat{\gamma}) + \frac{M \hat{k}}{\hat{\lambda}} = 0
\]

\[
\frac{\partial \text{LnL}}{\partial \gamma} = M \hat{\lambda} - \hat{k} \sum_{r=1}^{m} \sum_{j=1}^{n_r} r^2 (T_{rj} - r \hat{\gamma})^{-1} + \sum_{r=1}^{m} \sum_{j=1}^{n_r} r (T_{rj} - r \hat{\gamma})^{-1} = 0
\]

(35)

من المعادلة الثانية في (35) نحصل على:

\[\Rightarrow \hat{\lambda} = \frac{\hat{k}}{A}\]

(36)

إذ أن:

\[A = \frac{\sum_{r=1}^{m} \sum_{j=1}^{n_r} (T_{rj} - r \hat{\gamma})}{M}\]

وبتعبير قيمة \(\hat{\lambda}\) من (36) في المعادلة الثالثة من (35) نحصل على:

\[\hat{k} = \frac{A \sum_{r=1}^{m} \sum_{j=1}^{n_r} r (T_{rj} - r \hat{\gamma})^{-1}}{A \sum_{r=1}^{m} \sum_{j=1}^{n_r} r^2 (T_{rj} - r \hat{\gamma})^{-1} - M}\]

(37)
ومن خلال جعل قيمة معلمة الإزاحة \(\gamma = \tau \) ستتم تبسيط قيمة \(A \) إلى:

\[
A = \frac{\sum_{r=1}^{m} \sum_{j=1}^{n_r} T_{rj}}{M} = \bar{t}
\]

وعندها تكون قيم التقديرات \(\hat{\lambda}_{bl} \) و \(\hat{k}_{bl} \) من (32) و(37):

\[
\hat{k}_{bl} = \frac{\bar{t} \sum_{r=1}^{m} \sum_{j=1}^{n_r} r(T_{rj})^{-1}}{\bar{t} \sum_{r=1}^{m} \sum_{j=1}^{n_r} r^2(T_{rj})^{-1} - M}
\]

\[
\hat{\lambda}_{bl} = \frac{\hat{k}_{bl}}{\bar{t}}
\]

2- التقدير باستخدام طريقة التقلص (طريقة مقترحة):

Estimation by Shrinkage Method (Proposed Method)

في هذا الجزء سنناقش طريقة تقدير مقترحة من قبلنا والتي ستستخدم في هذا البحث في تقدير المعلمات لتوزيع كاما ذي المعلمين في حالة البيانات المفقودة، ونتمد المقدرات التي يتم الحصول عليها وفق هذه الطرق على مقارنة التقلص أيضاً. ولكن يتم فيه اخذ التوافق لل تقديارات الناتجة من استخدام طريقة Sinha المطورة في حل معدلات الإمكان غير الخطية، مع التقديرات الناتجة من استخدام طريقة Thom المطورة في حل معدلات الإمكان غير الخطية.

ويمكن كتابة عوارة طريقة التقلص لتقدير المعلمات لتوزيع كاما ذي المعلمين في حالة البيانات المفقودة وحسب الخطوات الاتية:

1- تقدير المعلمات لتوزيع كاما ذي المعلمين باستخدام طريقة Thom المطورة واعتمادها كمقدرات أولية للعينة المستخدمة (\(\hat{\lambda} \)).

2- تقدير المعلمات لتوزيع كاما ذي المعلمين باستخدام طريقة Sinha المطورة واعتمادها كمقدرات أولية (\(\tilde{\lambda} \)).

3- إيجاد المقدر (\(\tilde{k} \)) باستخدام صيغة مقدر التقلص التي اقترحها Thompson وعليه فإن مقدر التقلص للمعمرة \(k \) يعطى كالاتي:

\[
\tilde{k} = h_1 \hat{k} + (1 - h_1)k_{o} \quad 0 \leq h_1 \leq 1
\]

(39)

وبما أن قيمة ثابتة تعطى بين الصفر والواحد، ولعدم وجود قاعدة موحدة لاختيارها لذلك سوف يتم اشتقاق قيمة \(\tilde{k} \) التي تجعل متوسط مربعات الخطأ للقدر بالاعتماد على \(\hat{k} \) بالاعتماد على قيمة \(h_1 \) التي تجعل متوسط مربعات الخطأ للمقدر ينфи:

\[
MSE(\tilde{k}) = E(\tilde{k} - k)^2 = E[h_1 \hat{k} + (1 - h_1)k_{o} - k]^2
\]
بإضافة وطرح

$$MSE(\hat{k}) = h_1^2 MSE(\hat{k}) + 2h_1 (1 - h_1)(k_0 - k)B(\hat{k}) + (1 - h_1)^2 (k_0 - k)^2$$

وإذا صيغته النهاية تكون بالشكل الآتي:

$$\lambda = h_2 \lambda + (1 - h_2)\lambda_0$$

$$h_2 = \frac{(\lambda_0 - \lambda)^2}{[MSE(\hat{\lambda}) + (\lambda_0 - \lambda)^2]}$$

وان مقدر التقلص للمعلمة $$\lambda$$ يكون بالشكل الآتي:

$$\lambda = h_2 \lambda + (1 - h_2)\lambda_0$$

والطريقة نفسها يمكننا إيجاد قيمة $$h_2$$، والذي يعنى النهاية تكون بالشكل الآتي:

$$h_2 = \frac{(\lambda_0 - \lambda)^2}{[MSE(\hat{\lambda}) + (\lambda_0 - \lambda)^2]}$$

3- الجانب التجريبي:

يمكن استخدام أساليب المحاكاة لإجراء مقارنة بين الطرق المدروسة أو المقترحة وعملية

الطريقة الأفضل، وهذا ما نصب عليه أشياءنا في هذا البحث، إذ تم صياغة نموذج محاكاة بحيث

يمكن التقلص من المثال الذي من الممكن وجوده في الواقع العملية من حيث (أكبر عدد من

حالات الفشل، وحجم العينة الكلي، عدد المشاهدات لكل مجتمع جزئي، وقيم المعلومات) بغية تحقيق

الهدف الأساسي المتمثل في إيجاد أفضل الطرق المدروسة لتقدير معلمات نوزيع كاما ذي المعاملتين

في حالة البيانات المفقودة وذلك من خلال الإجابة عن التساؤلات الإنجابية:

1- كيفية تأثر طرق التقدير آراء التغير في أكبر عدد من حالات الفشل.

2- كيفية تأثر طرق التقدير آراء التغير في حجم العينة.

هذا وإن بنا تجربة المحاكاة التي سيتم الحصول على الإجابات لهذه التساؤلات

تتعدد على أربع مراحل وهي كالآتي:

المرحلة الأولى- تحديد القيم الافتراضية:

1- اختيار أكبر عدد من حالات الفشل $$m$$.

2- اختيار عدد فيمتنن الافتراضيات لأكبر عدد من حالات الفشل ($$m = 6,11$$).

3- اختيار حجم العينة الكلي $$N$$.

وقد تم اختيار أربع أحجام مختلفة من العينات وهي ($$N=20,30,50,100$$).

4- اختيار عدد المشاهدات لكل مجتمع جزئي ($$n=(n_1, n_2, \ldots, n_m)$$).
10
10
10

<table>
<thead>
<tr>
<th>m</th>
<th>6</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد المجتمعات الجزئية</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>عدد المشاهدات لكل مجتمع جزئي</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

4- اختيار قيم المعلمات الإفتراضية:

يتم اختيار ثلاث قيم إفتراضية لمعملة الشكل \(\lambda \) وقيمة إفتراضية لمعملة الشكل \(k \) وبالتالي سيكون هناك ثلاث نماذج مفترضة وكما موضح في الجدول الآتي:

<table>
<thead>
<tr>
<th>k</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

القيم الإفتراضية لمعملة الشكل \(k \) والمعملة \(\lambda \) تتوافق كاما ذي المعلمتين

المراحل الثانية: تطوير البيانات:

في هذه المرحلة تم استخدام طريقة التحويل المعكوس (Inverse Transform) على المشاهدات العشوائية ذات التوزيع الأسني الناتجة من مشاهدات عشوائية مولدة من مجتمع واحد من التوزيع المنظم (1) لغرض الحصول على مشاهدات ذات توزيع كاما ذي المعلمتين التي تمثل أوقات الفشل المفردة، ومن ثم تجميع أوقات الفشل المفردة مع بعضها للحصول على أوقات اشغال التجميعية وذلك باستخدام الصيغة الآتية:

\[
T_{rj} = \sum_{i=1}^{r} x_i, \quad r = 1, 2, ..., m
\]

\[
j = 1, 2, ..., n_r
\]

إذ أن:

\[
x_i = -\frac{1}{\lambda} \sum_{i=1}^{k} Logu_i, \quad i = 1, 2, ..., r
\]

(Continuous Uniform Variate) يمثل متغير منظم مستمر \(u_i \) المفردة مقدمةً وإن البيانات المتاحة هي فقط أوقات اشغال التجميعية وعدد حالات الفشل \(r \).
المراحل الثالثة: إيجاد التقديرات:

في هذه المرحلة تجرى عملية تقدير معلمات توزيع كاما ذي المعلماتين في حالة البيانات المفقودة وذلك باستخدام الصيغ المبينة في المعادلات الآتية:

(17) (27) (37) (38) (39) (40).

المراحل الرابعة: المقارنة بين طرق التقدير:

يتم في هذه المرحلة المقارنة ما بين طرق التقدير وذلك باستخدام المعيار الإحصائي متوسط مربعات الخطأ (MSE) وصيغته كما يلي:

$$MSE(\hat{\theta}) = \frac{1}{L} \sum_{i=1}^{L} (\hat{\theta}_i - \theta)^2$$

(45)

تمثل عدد المكررات لكل تجربة L حسب الأسلوب المستخدم وقد كان التكرار مساوياً إلى (1000) لكل تجربة.

جدول (3):

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>\hat{k}_n</th>
<th>\hat{k}_i</th>
<th>\hat{k}_s</th>
<th>\hat{k}_{bl}</th>
<th>\hat{k}_{sh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>1.180661</td>
<td>1.181449</td>
<td>1.134910</td>
<td>1.219581</td>
<td>1.158030</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.089932</td>
<td>1.098542</td>
<td>1.044303</td>
<td>1.124169</td>
<td>1.067377</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.048254</td>
<td>1.048776</td>
<td>1.002645</td>
<td>1.076054</td>
<td>1.025710</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.030127</td>
<td>1.030648</td>
<td>0.984520</td>
<td>1.046986</td>
<td>1.007584</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>2.293641</td>
<td>2.293790</td>
<td>2.246558</td>
<td>2.318181</td>
<td>2.270174</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.193732</td>
<td>2.193881</td>
<td>2.146660</td>
<td>2.215352</td>
<td>2.170270</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.128327</td>
<td>2.128473</td>
<td>2.081256</td>
<td>2.144323</td>
<td>2.104865</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.052534</td>
<td>2.052682</td>
<td>2.005482</td>
<td>2.062568</td>
<td>2.029082</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>3.466788</td>
<td>3.466856</td>
<td>3.419255</td>
<td>3.490591</td>
<td>3.443056</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.303605</td>
<td>3.303671</td>
<td>3.256079</td>
<td>3.321187</td>
<td>3.279875</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3.168317</td>
<td>3.168385</td>
<td>3.120806</td>
<td>3.180139</td>
<td>3.144595</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.093468</td>
<td>3.093536</td>
<td>3.045960</td>
<td>3.099038</td>
<td>3.069748</td>
</tr>
</tbody>
</table>
جدول (4)
متوسط مربعات الخطأ (MSE) لتقدير معلمة الشكل λ بمختلف المعايير وأحجام العينات ولجميع النماذج عندما $m=6$

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>\hat{k}_n</th>
<th>\hat{k}_l</th>
<th>\hat{k}_s</th>
<th>\hat{k}_{bl}</th>
<th>\hat{k}_{sh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>0.219601</td>
<td>0.219598</td>
<td>0.204508</td>
<td>0.235964</td>
<td>0.211518</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.102973</td>
<td>0.102947</td>
<td>0.096426</td>
<td>0.114936</td>
<td>0.099154</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.046000</td>
<td>0.045986</td>
<td>0.043455</td>
<td>0.053401</td>
<td>0.044188</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.023558</td>
<td>0.023554</td>
<td>0.022766</td>
<td>0.027795</td>
<td>0.022628</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.731481</td>
<td>0.731451</td>
<td>0.705442</td>
<td>0.749495</td>
<td>0.717889</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.408274</td>
<td>0.408255</td>
<td>0.391858</td>
<td>0.425460</td>
<td>0.399499</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.217891</td>
<td>0.217883</td>
<td>0.207792</td>
<td>0.237313</td>
<td>0.212280</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.088964</td>
<td>0.088957</td>
<td>0.086123</td>
<td>0.095661</td>
<td>0.086983</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1.612352</td>
<td>1.612335</td>
<td>1.569675</td>
<td>1.668147</td>
<td>1.590438</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.862749</td>
<td>0.862740</td>
<td>0.835807</td>
<td>0.891181</td>
<td>0.848707</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.447087</td>
<td>0.447079</td>
<td>0.433141</td>
<td>0.469963</td>
<td>0.439544</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.195751</td>
<td>0.195749</td>
<td>0.189025</td>
<td>0.205979</td>
<td>0.191821</td>
</tr>
</tbody>
</table>

جدول (5)
تقدير المعلمة λ بمختلف المعايير وأحجام العينات ولجميع النماذج عندما $m=6$

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>$\hat{\lambda}_n$</th>
<th>$\hat{\lambda}_l$</th>
<th>$\hat{\lambda}_s$</th>
<th>$\hat{\lambda}_{bl}$</th>
<th>$\hat{\lambda}_{sh}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>1.194603</td>
<td>1.195096</td>
<td>1.148341</td>
<td>1.233981</td>
<td>1.171718</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.098925</td>
<td>1.099449</td>
<td>1.052924</td>
<td>1.133628</td>
<td>1.076186</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.051109</td>
<td>1.051632</td>
<td>1.005388</td>
<td>1.078905</td>
<td>1.028510</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.033452</td>
<td>1.033974</td>
<td>0.987699</td>
<td>1.050349</td>
<td>1.010837</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1.151685</td>
<td>1.151759</td>
<td>1.128056</td>
<td>1.164233</td>
<td>1.139908</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.100312</td>
<td>1.100387</td>
<td>1.076705</td>
<td>1.111197</td>
<td>1.088546</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.068009</td>
<td>1.068083</td>
<td>1.044399</td>
<td>1.076066</td>
<td>1.056241</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.027479</td>
<td>1.027553</td>
<td>1.003923</td>
<td>1.032528</td>
<td>1.015738</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1.159968</td>
<td>1.159991</td>
<td>1.144076</td>
<td>1.167975</td>
<td>1.152033</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.105831</td>
<td>1.105853</td>
<td>1.089933</td>
<td>1.111859</td>
<td>1.097893</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.058069</td>
<td>1.058092</td>
<td>1.042195</td>
<td>1.062031</td>
<td>1.050143</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.032088</td>
<td>1.032110</td>
<td>1.016236</td>
<td>1.03976</td>
<td>1.024173</td>
</tr>
</tbody>
</table>
جدول (1) متوسط مربعات الخطأ (MSE) لتقدير المعلمة $\hat{\lambda}$ بجميع الطرق وأحجام العينات ولجميع النماذج عند $m=6$

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>$\hat{\lambda}_n$</th>
<th>$\hat{\lambda}_l$</th>
<th>$\hat{\lambda}_s$</th>
<th>$\hat{\lambda}_{bl}$</th>
<th>$\hat{\lambda}_{sh}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>0.243243</td>
<td>0.243262</td>
<td>0.225289</td>
<td>0.264597</td>
<td>0.233722</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.116238</td>
<td>0.116229</td>
<td>0.107993</td>
<td>0.130088</td>
<td>0.111565</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.052586</td>
<td>0.052580</td>
<td>0.049286</td>
<td>0.060415</td>
<td>0.050396</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.026605</td>
<td>0.026607</td>
<td>0.025281</td>
<td>0.030977</td>
<td>0.025407</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.198553</td>
<td>0.198546</td>
<td>0.191431</td>
<td>0.203909</td>
<td>0.194847</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.108326</td>
<td>0.108322</td>
<td>0.103826</td>
<td>0.112791</td>
<td>0.105933</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.059624</td>
<td>0.059622</td>
<td>0.056765</td>
<td>0.063720</td>
<td>0.058053</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.023487</td>
<td>0.023486</td>
<td>0.022663</td>
<td>0.025262</td>
<td>0.022935</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.190126</td>
<td>0.190125</td>
<td>0.185054</td>
<td>0.196452</td>
<td>0.187526</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.103539</td>
<td>0.103538</td>
<td>0.100262</td>
<td>0.107221</td>
<td>0.101837</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.050805</td>
<td>0.050805</td>
<td>0.049152</td>
<td>0.053348</td>
<td>0.049915</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.022655</td>
<td>0.022655</td>
<td>0.021853</td>
<td>0.023890</td>
<td>0.022191</td>
</tr>
</tbody>
</table>

جدول (2) تقدير معلمة الشكل k بجميع الطرق وأحجام العينات ولجميع النماذج عند $m=11$

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>\hat{k}_n</th>
<th>\hat{k}_l</th>
<th>\hat{k}_s</th>
<th>\hat{k}_{bl}</th>
<th>\hat{k}_{sh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>1.150498</td>
<td>1.150772</td>
<td>1.118163</td>
<td>1.177829</td>
<td>1.134467</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.094805</td>
<td>1.095085</td>
<td>1.062494</td>
<td>1.119711</td>
<td>1.078790</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.055664</td>
<td>1.055942</td>
<td>1.023354</td>
<td>1.071119</td>
<td>1.039648</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.032091</td>
<td>1.032369</td>
<td>0.999787</td>
<td>1.042876</td>
<td>1.016078</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>2.332821</td>
<td>2.332898</td>
<td>2.299765</td>
<td>2.361875</td>
<td>2.316332</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.196489</td>
<td>2.196568</td>
<td>2.163445</td>
<td>2.213263</td>
<td>2.180006</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.114595</td>
<td>2.114673</td>
<td>2.081557</td>
<td>2.123263</td>
<td>2.098115</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.056454</td>
<td>2.056532</td>
<td>2.023420</td>
<td>2.059925</td>
<td>2.039976</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>3.508881</td>
<td>3.508916</td>
<td>3.475607</td>
<td>3.527823</td>
<td>3.492262</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.286676</td>
<td>3.286712</td>
<td>3.253413</td>
<td>3.303935</td>
<td>3.270063</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3.200047</td>
<td>3.200082</td>
<td>3.166781</td>
<td>3.205076</td>
<td>3.183432</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.089478</td>
<td>3.089514</td>
<td>3.056219</td>
<td>3.095910</td>
<td>3.072867</td>
</tr>
</tbody>
</table>
(8)

\textbf{جدول (8)}

\textit{تقدير مساحة الخطأ (MSE) لمتوسط مربعات الخطأ} \(k \) بجميع الطرازات وأحجام العينات ولجميع النماذج عندما \(m=11 \)

<table>
<thead>
<tr>
<th>Model</th>
<th>(N)</th>
<th>(\hat{k}_n)</th>
<th>(\hat{k}_l)</th>
<th>(\hat{k}_s)</th>
<th>(\hat{k}_{bl})</th>
<th>(\hat{k}_{sh})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>0.181270</td>
<td>0.181254</td>
<td>0.172252</td>
<td>0.190090</td>
<td>0.176487</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.108625</td>
<td>0.108610</td>
<td>0.103317</td>
<td>0.117529</td>
<td>0.105698</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.046087</td>
<td>0.046082</td>
<td>0.043418</td>
<td>0.051110</td>
<td>0.044485</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.022584</td>
<td>0.022583</td>
<td>0.021494</td>
<td>0.025221</td>
<td>0.021773</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.808762</td>
<td>0.808749</td>
<td>0.787537</td>
<td>0.846441</td>
<td>0.797868</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.398460</td>
<td>0.398450</td>
<td>0.386374</td>
<td>0.419959</td>
<td>0.392138</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.201363</td>
<td>0.201357</td>
<td>0.194769</td>
<td>0.206300</td>
<td>0.197789</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.084167</td>
<td>0.084165</td>
<td>0.081476</td>
<td>0.087750</td>
<td>0.082547</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1.853280</td>
<td>1.853270</td>
<td>1.820221</td>
<td>1.889703</td>
<td>1.836468</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.903871</td>
<td>0.903861</td>
<td>0.885712</td>
<td>0.935539</td>
<td>0.894509</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.472310</td>
<td>0.472308</td>
<td>0.460001</td>
<td>0.476940</td>
<td>0.465877</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.210840</td>
<td>0.210838</td>
<td>0.205940</td>
<td>0.217912</td>
<td>0.208112</td>
</tr>
</tbody>
</table>

(9)

\textbf{جدول (9)}

\textit{تقدير المساحة \(\lambda \) بجميع الطرازات وأحجام العينات ولجميع النماذج عندما \(m=11 \)}

<table>
<thead>
<tr>
<th>Model</th>
<th>(N)</th>
<th>(\hat{\lambda}_n)</th>
<th>(\hat{\lambda}_l)</th>
<th>(\hat{\lambda}_s)</th>
<th>(\hat{\lambda}_{bl})</th>
<th>(\hat{\lambda}_{sh})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>1.160203</td>
<td>1.160478</td>
<td>1.127619</td>
<td>1.187812</td>
<td>1.144049</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.096927</td>
<td>1.097207</td>
<td>1.064552</td>
<td>1.120369</td>
<td>1.080797</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.058863</td>
<td>1.059142</td>
<td>1.026446</td>
<td>1.074605</td>
<td>1.042794</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.034526</td>
<td>1.034805</td>
<td>1.002151</td>
<td>1.045294</td>
<td>1.018478</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1.170091</td>
<td>1.170130</td>
<td>1.153496</td>
<td>1.184425</td>
<td>1.161813</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.101854</td>
<td>1.101894</td>
<td>1.085276</td>
<td>1.110172</td>
<td>1.093585</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.059657</td>
<td>1.059696</td>
<td>1.043102</td>
<td>1.064009</td>
<td>1.051399</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.029285</td>
<td>1.029324</td>
<td>1.012749</td>
<td>1.031044</td>
<td>1.021036</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1.173486</td>
<td>1.173498</td>
<td>1.162358</td>
<td>1.179734</td>
<td>1.167928</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.098615</td>
<td>1.098627</td>
<td>1.087500</td>
<td>1.104362</td>
<td>1.093064</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.067553</td>
<td>1.067565</td>
<td>1.056454</td>
<td>1.069193</td>
<td>1.062009</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.030546</td>
<td>1.030558</td>
<td>1.019453</td>
<td>1.032675</td>
<td>1.025005</td>
</tr>
<tr>
<td>متوسط مربعات الخطأ (MSE) لتقدير المعلمة λ عند $m=11$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>موديل</td>
<td>N</td>
<td>$\hat{\lambda}_n$</td>
<td>$\hat{\lambda}_r$</td>
<td>$\hat{\lambda}_s$</td>
<td>$\hat{\lambda}_{bl}$</td>
<td>$\hat{\lambda}_{sh}$</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>0.201110</td>
<td>0.201101</td>
<td>0.190769</td>
<td>0.210934</td>
<td>0.195663</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.114221</td>
<td>0.114209</td>
<td>0.108416</td>
<td>0.124037</td>
<td>0.111044</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.049788</td>
<td>0.049786</td>
<td>0.046714</td>
<td>0.055407</td>
<td>0.047982</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.025028</td>
<td>0.025029</td>
<td>0.023664</td>
<td>0.027646</td>
<td>0.024079</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.207934</td>
<td>0.207931</td>
<td>0.202369</td>
<td>0.216578</td>
<td>0.205081</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.104104</td>
<td>0.104102</td>
<td>0.100863</td>
<td>0.109059</td>
<td>0.102414</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.053044</td>
<td>0.053042</td>
<td>0.051257</td>
<td>0.054334</td>
<td>0.052081</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.021910</td>
<td>0.021909</td>
<td>0.021177</td>
<td>0.022849</td>
<td>0.021474</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.212657</td>
<td>0.212656</td>
<td>0.208820</td>
<td>0.216438</td>
<td>0.210707</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.105057</td>
<td>0.105056</td>
<td>0.102913</td>
<td>0.108529</td>
<td>0.103954</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.053677</td>
<td>0.053677</td>
<td>0.052268</td>
<td>0.054073</td>
<td>0.052942</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.024364</td>
<td>0.024364</td>
<td>0.023789</td>
<td>0.025137</td>
<td>0.024046</td>
</tr>
</tbody>
</table>
الاستنتاجات والتوصيات

من خلال تنفيذ تجارب المحاكاة وبناءً على ما تم تحليله من نتائج الجانب التجربي فقد تم التوصل إلى الاستنتاجات الآتية:

1- إن قيم متوسط مربعات الخطأ (MSE) K لنفترض كل من المعلمتيين, ومجمع طرائق التقدير وهذا ما ينسجم مع النظرية الإحصائية.

2- من خلال نتائج المحاكاة وبالاعتماد على المقياس الإحصائي متوسط مربعات الخطأ يمكن القول بشكل عام أن طريقة المطورة تأتي من حيث الأفضلية بالمرتبة الأولى في تقدير المعلمتيين في حين تأتي طريقة التقلص بالمرتبة الثانية تليها طريقة Thom المطورة بالمرتبة الثالثة ومن ثم طريقة شينتون-رافسون بالمرتبة الرابعة (Bowman, Shenton and Lam) وطريقة المطورة بالمرتبة الخامسة.

التوصيات:

1- تطوير وانتشار طرائق الأخرى المستخدمة في حل معادلات الإمكان غير الخطية لتوزيع كاما ذي المعلمتيين في حالة البيانات الكاملة لتقدير حالة البيانات المفقودة ومقارنتها مع الطرائق التي تم استخدامها في هذا البحث.

2- تطوير وانتشار طرائق تقدير المعلمات للتوزيعات الأخرى المستخدمة في حالة البيانات الكاملة لتقدير حالة البيانات غير القياسية والمتصلة بأوقات الانتشار التجميعية وعدد حالات الفشل وذلك لأن البيانات الخاصة بأوقات الفشل المفردة غالباً ما تحتوي على مشاهدات مفقودة مما يؤدي إلى عدم إمكانية استخدام الطرائق الاعتقالية في التقدير.
المصادر الأجنبية:

