Approximate Regular Modules

Mehdi. S. Abbas *

Maha. A. Ali*

Received 20, December, 2009
Accepted 13, February, 2011

Abstract:
There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.

Kay words: approximately regular modules, approximately Z-regular, approximately F-regular, approximately direct-summand, approximately pointwise-projective modules

Introduction:
Let R be a ring with 1, and let M be a unitary (left) R-module. Recall that R regular ring, if for each element x in R, there exists an element y in R such that x = xyx. In the sense of Zelmanowitz the module M is called Z-regular, if for each element m in M, there exits f∈M*=Hom_R(M,R) such that m= f(m)m [1]. In this paper we introduce the concept of approximately Z-regular modules, we call an element m in an R-module M is approximately regular, if there exists α∈M such that m=α(m)m∈J(R)M and α(m)=(α(m))^2. An R-module M is said to be approximately Z-regular module if each of its element is approximately regular. A ring R is approximately Z-regular if it is approximately Z-regular R-module. We obtain that approximately Z-regular modules is closed under direct sums and direct summands. Recall that an R-module M is said to be an approximately pointwise-projective module, if given R-epimorphism α:A→B (where A and B are R-modules) and R-homomorphism f:M→B, for each a∈M, there exists an R-homomorphism g_a:M→A (may depend on a) such that (α∘g_a)(a)−f(a)∈J(R)B [2]. We obtain that every approximately Z-regular module is approximately pointwise-projective and we consider versus conditions. In the sense of Fieldhouse the module M is called F-regular if every submodule of M is pure [3]. We introduce the concept of approximately F-regular modules, we call an R-module M is approximately F-regular if each submodule of M is approximately pure. In (6) we proved that every approximately Z-regular module is approximately F-regular, recall that a submodule N of an R-module M is said to lie over a direct summand of M, if there exists a direct decomposition M=P⊕Q with P⊆N and N∩Q is small in M [4], this concept leads us to introduce the concept of lie over approximately direct-summand. We call a submodule N of an R-module M lies over approximately direct-summand of M, if there exists a direct decomposition M=P⊕Q with P⊆N

*Department of Mathematics, University of Mustansiriyah, Baghdad, Iraq
and \(N \cap Q \subseteq J(R)M \). It is clear that a submodule which lies over approximately direct-summand lies over direct-summand.

We introduce a generalization of the following:

Proposition (1) [4]: If \(M \) is any \(R \)-module, then the following conditions are equivalent for an element \(x \) in \(M \):

1. \(Rx \) lies over a projective direct summand of \(M \).
2. There exists \(\alpha \in M^* \) s.t. \(\alpha(x) = (\alpha(x))^2 \) and \(x - \alpha(x)x \in J(M) \).
3. There exists a regular element \(y \in Rx \) such that \(x-y \in J(M) \) and \(Rx = Ry \oplus R(x-y) \).
4. There exists a regular element \(y \in M \) such that \(x-y \in J(M) \).
5. There exists \(\bigoplus :M \longrightarrow Rx \) such that \(\bigoplus^2 = \bigoplus \), \(\bigoplus (M) \) is projective and \(x- \bigoplus(x) \in J(M) \).

Results:

We recall that the dual basis lemma of approximately pointwise-projective modules in the flowing lemma which appear in [2]:

Lemma (2): Let \(M \) be an \(R \)-module. Then the following statements are equivalent:

1. \(M \) is approximately pointwise-projective.
2. Every \(R \)-epimorphism \(\alpha : A \longrightarrow M \) is approximately pointwise split for each \(R \)-module \(A \).
3. Every \(R \)-epimorphism \(\alpha : F \longrightarrow M \) is approximately pointwise-projective split for each free \(R \)-module \(F \).
4. For each \(m \in M \), there exist families \(\{ x_i \}_{i=1}^n \in M \) and \(\{ \varphi_i \}_{i=1}^n \in M^* = \text{Hom}_R(M,R) \) such that \(\sum_{i=1}^n \varphi_i(m)x_i - m \in J(R)M \).

Proposition (3): Every approximately \(Z \)-regular module is approximately pointwise-projective.

Proof: Let \(M \) be approximate \(Z \)-regular, then \(\forall m \in M, \exists \alpha \in M^* \) such that \(m - \alpha(m)m \in J(R)M \) and \(\alpha(m) = (\alpha(m))^2 \). i.e. there exist families \(\{ x_i \}_{i=1}^n \), \(m \) where \(i=1 \) and \(\{ \alpha_i \}_{i=1}^n \) such that \(\alpha \bigm| _i \) where \(i \in I \), s.t.

\[
\sum_{i=1}^n \alpha_i(x_i)m - m = \alpha(m)m - m \in J(R)M
\]

So by Dual-Basis Lemma (2) \(M \) is approximately pointwise-projective.

Recall that an \(R \)-module \(M \) is said to be an approximately-projective module, if for each \(R \)-epimorphism \(\alpha : A \longrightarrow B \) (where \(A \) and \(B \) are \(R \)-modules) and every \(R \)-homomorphism \(f : M \longrightarrow B \), there exists an \(R \)-homomorphism \(g : M \longrightarrow A \) such that \((\alpha \circ g)(a) = f(a) \forall a \in M \) [5].

Now, we are in a position to give an example of approximately pointwise-projective module, but it is not approximately-projective by using approximately \(Z \)-regular module.

Example (4): Let \(K \) be a field, and \(I \) be an infinite index set. For each \(i \in I \), let \(K = K_i \). Let \(R = \prod_{i=1}^\infty K_i \) ith coordinate operations \(R \) is ring. \(R \) is a regular ring [6]. Let \(P = \bigoplus_{i \in I} K_i \), it is clear that \(P \) is an ideal. \(P \) is a regular [6]. So \(P \) is approximately \(Z \)-regular and by (3) we have \(P \) is approximately pointwise-projective module. \(P \) is a submodule of a free \(R \)-module which is not direct summand of \(R \). So \(P \) is not projective and \(J(R) = 0 \), then \(P \) is not approximately-projective.

Proposition (5): Let \(M \) approximately \(Z \)-regular \(R \)-module and \(N \) be a submodule of \(M \) with \(J(R)M \cap N \subseteq J(R)N \), then \(N \) is
approximately Z-regular (and hence approximately pointwise-projective).

Proof: Let N be a submodule of approximately Z-regular R-module M and let \(n \in N \), then \(n \in M \), so there exists \(f \in M^* \) s.t. \(f(n)n - n \in J(R)M \) and \((f(n))^2 = f(n) \). Let \(\alpha = f|_N \) be the restriction of N to R, since N is a submodule of M, then \(\alpha \in N^* \) and \(\alpha(n)n - n \in J(R)M \cap N \subseteq J(R)N \) and \((\alpha(n))^2 = \alpha(n) \). So N is approximately Z-regular.

It is known that every Z-regular module is F-regular [7], but the converse is not true, if M is projective R-module, then every F-regular module is Z-regular [8].

Recall that a submodule N of an R-module M is approximately-pure submodule, \(N \cap IM = N + J(R)M \cap (N \cap IM) \), for each ideal I of R [5].

Proposition (6): Every approximately Z-regular module is approximately F-regular.

Proof: Let M be approximately Z-regular module, P be a submodule of M and I be an ideal in R., let \(x \in P \cap IM \), then \(x \in P \) and \(x = \sum \frac{n_i}{i} r_i m_i \), where \(r_i \in I, m_i \in M \). Since M is approximately Z-regular, then there exists \(h \in M^* \) s.t. \(h(x)x - x \in J(R)M \) and \((h(x))^2 = h(x) \), then \(h(\sum \frac{n_i}{i} r_i m_i) x - x \in J(R)M \). i.e. \(x = \sum \frac{n_i}{i} r_i h(m_i) x + t \) where \(t \in J(R)M \), it is clear that \(\sum \frac{n_i}{i} r_i h(m_i) \) I, then \(x \in IP + J(R)M \) and \(t = x - \sum \frac{n_i}{i} r_i h(m_i)x \). i.e. \(t \in P \cap IM \), then \(x \in IP + J(R)M \cap (P \cap IM) \). Then \(P \cap IM \subseteq IP + J(R)M \cap (P \cap IM) \), so \(P \cap IM = IP + J(R)M \cap (P \cap IM) \). Then M is approximately F-regular.

Remark (7): The converse of above proposition is not true for example \(Z_d \) is approximately F-regular, but it is not approximately Z-regular.

An element \(x \) in an R-module M is said to be semi-regular, if the conditions in the proposition (1) are satisfies. An R-module M is called semi-regular, if each of its elements is semi-regular [4].

We need the following lemma which appears in [4].

Lemma (8) [4]: Let M be an R-module and let \(x \in M \) be a regular element, if \(\alpha \in M^* \) satisfies \(x = \alpha(x) \) and if \(e = \alpha(x) \). Then:

1. \(e^2 = e \) and \(x = ex \).
2. \(Rx \cap Re \) is projective.
3. \(M = Rx \oplus W \), where \(W = \{ w \in M : \alpha(w) x = 0 \} \).

We need the following lemma which appears in [8].

Lemma (8)[8]: Let M be a projective R-module and N be a submodule of M. Then M/N is flat if and only if given \(x \in N \), there exists an R-homomorphism \(\alpha : M \longrightarrow N \) such that \(x = \alpha(x) \).

Proposition (10): If M is approximately pointwise-projective semi-regular R-module, then every approximately F-regular is approximately Z-regular.

Proof: Let \(x \in M \), then by Dual-Basis Lemma (2), there exist families \(\{x_i\}_{i=1}^n \) \(x_i \in M \) and \(\{\varphi_i\}_{i=1}^n \) \(\varphi_i \in M^* \) s.t. \(\sum \frac{n_i}{i} \varphi_i(x) x - x \in J(R)M \). Hence \(x = \sum \frac{n_i}{i} \varphi_i(x) x_{i} + \sum s_j m_j \) s.t. \(s_j \in J(R) \) and \(m_j \in M \). Let I be an ideal of R generated by \(\{ \varphi_1(x), \varphi_2(x), ..., \varphi_n(x), s_1, s_2, ..., s_k \} \), then \(x \in P \cap IM \)
where \(P \) is a submodule of \(M \) generated by \(x \). Since \(M \) is approximately F-regular, then \(x \in IP + J(R)M \cap (P \cap IM) \). Hence \(x = cx \) such that \(c \in I \), then \(c = \sum_{i=1}^{n} t_i \varphi_i \)

\[
(x) + \sum_{j=1}^{k} r_j s_j \text{ i.e. } a = \sum_{i=1}^{n} t_i \varphi_i \text{ (x)}
\]

\[
x + \sum_{j=1}^{k} r_j s_j \text{ s.t. } r_j, t_i \in R. \text{ Then } \sum_{i=1}^{n} t_i \varphi_i (x) = x - x \in J(R)M. \text{ Put } h = \sum_{i=1}^{n} t_i \varphi_i (x), \text{ it is clear that } h \in M^*, \text{ then } h(x)x - x \in J(R)M \text{ and since } M \text{ is semi-regular, then } (h(x))^2 = h(x), \text{ so } M \text{ is approximately Z-regular.}

Let \(R \) be regular ring. Then every \(R \)-module \(M \) is F-regular [9].

Corollary (11): Let \(R \) be a regular ring. Then every approximately pointwise-projective semi-regular \(R \)-module is approximately Z-regular.

Proof: Let \(M \) be approximately pointwise-projective \(R \)-module. Then \(M \) is F-regular, and hence is approximately F-regular. The conclusion follows by proposition (10).

In the following theorem we give several characterizations of approximately regular modules.

Theorem (12): Let \(M \) be an \(R \)-module. Then the following conditions are equivalent for an element \(x \) in \(M \):

1. \(Rx \) lies over a projective approximately direct-summand of \(M \).
2. \(x \) is approximately regular element in \(M \).
3. There exists a regular element \(y \in Rx \) such that \(x - y \in J(R)M \) and \(Rx = Ry \oplus R(x-y) \).
4. There exists a regular element \(y \in M \) such that \(x - y \in J(R)M \).
5. There exists \(\rho : M \rightarrow Rx \) suct that \(\rho \rho = \rho \), \(\rho (M) \) is a projective and \(x - \rho (x) \in J(R)M \).

Proof: (1) \(\Rightarrow \) (2). Assume that there exists a direct decomposition M=\(P \oplus Q \), where \(P \subset Rx \) is projective and \(Rx \cap Q \subset J(R)M \). Since \(Rx = M \cap Rx = (P \oplus Q) \cap Rx = P \cap Rx \oplus Q \cap Rx = P \oplus Q \cap Rx \) hence \(P \) is finitely generated projective \(R \)-module, so by Dual-Basis Lemma there exist \(\{ x_i \}_{i=1}^{n}, \varphi_i \in P^* \). Put \(x_i = r_i, x, r_i \in R \) and define \(\alpha : P \rightarrow R \) by \(\alpha (p) = \sum_{i=1}^{n} r_i \varphi_i (p) \) for each \(p \in P \). Then \(\alpha \) can be extended to \(M \) by putting \(\alpha (Q) = 0 \). If \(x + p \) where \(p \in P \) and \(q \in Q \) and \(\alpha (x)x = \alpha (p+q)x = \alpha (p)x = \sum_{i=1}^{n} r_i \varphi_i (p)x \).

\[
x = \sum_{i=1}^{n} r_i \varphi_i (p)x = \sum_{i=1}^{n} \varphi_i (p)x = p. \text{ It is clear that } x - \alpha (x)x = p = q \in Q \cap Rx \subset J(R)M \text{ i.e. } x - \alpha (x)x \in J(R)M \text{ and } \alpha (x)x = \alpha (p)x = \alpha (x)x = \alpha (x)x - \alpha (x)x. \text{ Hence } y \text{ is a regular element and } x - y \in J(R)M, \text{ then by lemma (8), we have } M = Ry \oplus W, \text{ where } W = \{ w \in M \mid \alpha (w)y = 0 \}. \text{ We claim that } Rx \cap W = Rx-y. \text{ Let } w \in Rx-y \text{ then } w = (x-y) = rx - ry \text{ for some } r \in R, w = rx - ry = rx - r\alpha (x)x = [r \alpha (x)x] \in Rx \text{ and } \alpha (w)y = \alpha (rx - ry)y = \alpha (rx)y - \alpha (ry)y = \alpha (rx) \alpha (x)x - \alpha (r\alpha (x)x) \alpha (x)x = r \alpha (x)x - r \alpha (x)x = 0, \text{ so } w \in W \text{ and hence } w \in Rx \cap W. \text{ This implies that } R(x-y) \subset Rx \cap W. \text{ Now let } z \in Rx \cap W. \text{ Then } z = rx \text{ where } r \in R \text{ and } 0 = \alpha (z) = \alpha (rx) \alpha (x)x = r \alpha (x) \alpha (x)x = r \alpha (x) \alpha (x)x = r \alpha (x) \alpha (x)
Let y be approximately regular. Suppose that there is a regular element $y \in M$ such that $x-y \in J(R)M$ and suppose that $y = \alpha(y)y$, for some $\alpha \in M^*$, see the proof of (2) \Rightarrow (3).

Write $e = \alpha(y)$, then $x-ex = (1-e)(x-y) \in J(R)M$ and we claim that ex is a regular element. $e(\alpha) = \alpha(y)$, for some $b \in R$, then $b \in M^*$ and $(b \alpha) = \alpha(x) = 1$ for some $b \in R$. Thus $b \alpha = \alpha(x) = 1$.

If $\rho : M \rightarrow R_y$ is the projection map of M onto R_y. To prove that $x-\rho(x) \in J(R)M$. Write $x = ry + w$, where $r \in R$, $w \in W$. Then $\alpha(x-ry) = \alpha(ry+w-ry) = \alpha(ry)y + \alpha(w)y - \alpha(ry)y = 0$ and $\alpha(x-ry) = \alpha(x)y - \alpha(ry)y$. Hence $\rho(x) = ry = \alpha(x)y$, thus $x-\rho(x) = (x-y) - (\alpha(x)y)(x-y)y \in J(R)M + J(R)M \subseteq J(R)M \Rightarrow x-\rho(x) \in J(R)M$.

(5) \Rightarrow (1). This is clear.

Remark (13): It is known that if M is Z-regular R-module, then $J(M) = 0$ [1] and hence $J(R)M = 0$. Thus an R-module M is Z-regular if and only if M is approximately Z-regular and $J(M) = 0$.

Corollary (14): Let M be an R-module and let $x, y \in M$. If $x-y \in J(R)M$ and y is approximately regular, then x is approximately regular.

Proof: Let y be approximately regular of M, then by theorem (12) (4) there exists a regular element $z \in M$, s.t. $y-z \in J(R)M$, but we have $x-y \in J(R)M$, hence $x-z \in J(R)M$, so again by theorem (12), x is approximately regular element in M.

Corollary (14): A projective module M is Z-regular if and only if every homomorphism image is flat and $J(M) = 0$.

Proof: Let M be a projective R-module, $x \in M$ and M/Rx is flat. Then by lemma (8), there exists an R-homomorphism $\alpha : M \rightarrow Rx$ such that $x = \alpha(x)$. It is clear that $\alpha = \alpha^2$, since $M = \alpha(M) \oplus (1-\alpha)(M)$, then $Rx = \alpha(M)$ is a projective direct summand, it is clear that M is approximately Z-regular and since $J(M) = 0$, then by remark (13), M is Z-regular. The converse is an immediate from remark (13) and theorem (12) (5).

Remark (16):

By looking at the proof of the above corollary, we observe that a module has zero Jacobson radical if each cyclic submodule is a direct summand.

Theorem (17): The following conditions are equivalent for an R-module M

1. M is approximately Z-regular.
2. If N is finitely generated submodule of M, then there exists an R-homomorphism $\alpha : M \rightarrow N$ such that $\alpha = \alpha^2$, $\alpha(M)$ is projective and $(1-\alpha)(N) \subseteq J(R)M$.
3. Every finitely generated submodule of M lies over a projective approximately direct-summand of M.

Proof: (1) \Rightarrow (2). Observe that theorem (12)(5) starts an induction on the number of generators of N. Suppose $N = Rx_0 + \ldots + Rx_n$, then theorem (12)(5) implies that there exists $\beta : M \rightarrow Rx_n$ s.t. $\beta^2 = \beta$, $\beta(M)$ is projective and $(1-\beta)(N) \subseteq J(R)M$. Write $K = (1-\beta)(Rx_0) + (1-\beta)(Rx_1) + \ldots + (1-\beta)(Rx_n)$ and by induction, there exists $\delta : M \rightarrow K$ such that $\delta = \delta^2$, $\delta(M)$ is projective and $(1-\delta)(K) \subseteq J(R)M$.

Define $\alpha = \beta + \delta - \beta \delta$. Then $\alpha = \alpha^2$.
and \(\alpha(M) = (\beta + \delta - \beta \delta) \)
\((M) = \beta(M) \oplus \delta(M) \). Hence \(\alpha(M) \) is
projective and since \(N = K + Rx_n \), it is follows that
\(\alpha(M) \subseteq N \) and
\((1-\alpha)(N) = (1-\beta)(1-\delta)(N) \subseteq JRM \).
\((2) \Rightarrow (3) \). Let \(N \) be any finitely generated submodule of \(M \). Then by \((2) \) there
exists \(\alpha : M \rightarrow N \) such that \(\alpha = \alpha^2 \),
\(\alpha(M) \) is projective and \((1 \alpha)(N) \subseteq JRM \). If \(y \in \alpha(M) \cap N \), then
\(y \in N \) and \(y = (1 - \alpha)(x) \), for some \(x \in M \).
But \(x = y + \alpha(x) \in N \) which implies that
\((1 - \alpha)(M) \cap N \subseteq (1 - \alpha)(N) \subseteq JRM \).
Now \(M = \alpha(M) \oplus (1 - \alpha)(M) \), \(\alpha(M) \subseteq N \) and
\((1 - \alpha)(M) \cap N \subseteq JRM \). So \(N \) lies over a
projective approximately direct-summand of \(M \).
\((3) \Rightarrow (1) \). This is clear.

Lemma (18): Let \(N \) be a direct summand of an \(R \)-module \(M \) and \(x \in N \).
Then \(x \) is approximately regular element in \(N \) if and only if \(x \) is
approximately regular element in \(M \).

Proof: Suppose that \(x \) is approximately regular element in \(N \), then there exists
\(\alpha \in N^* \) s.t. \((\alpha(x))^2 = \alpha(x) \) and \(\alpha \alpha(x) \in JRN \).
Since \(N \) is direct summand of \(M \), \(M = N \oplus K \) for some
submodule \(K \) of \(M \). Extend \(\alpha \) to all \(M \) by putting \(\alpha(K) = 0 \). Then \(\alpha \in M^* \),
\((\alpha(x))^2 = \alpha(x) \) and \(\alpha \alpha(x) \in JRN \).
Hence \(x \) is approximately regular element in \(M \).
For the converse, let \(x \) be approximately regular element in \(M \) and \(x \in N \), then there exists
\(\alpha \in M^* \) such that \((\alpha(x))^2 = \alpha(x) \) and \(\alpha \alpha(x) \in JRM \).
Let
\[
\alpha_1 = \alpha \bigg|_{N} : N \rightarrow R \text{, then } \alpha_1 \in N^*. \]
\(\alpha_1(x)(x)^2 = \alpha_1(x) \) and \(\alpha \alpha(x) \in JRM \)
\(\Rightarrow JRM \subseteq JRN \oplus JRM \), this implies \(\alpha \alpha(x) \in JRM \).
Hence \(x \) is approximately regular element in \(N \).

Theorem (19): Let \(M = \bigoplus_{i \in I} M_i \) be a
direct sum of \(R \)-modules \(M_i \). Then \(M \) is
approximately \(Z \)-regular if and only if \(M_i \) is approximately \(Z \)-regular for each
\(i \in I \).

Proof: Let \(N \) be a direct summand of \(M \) and \(x \in N \). Then by lemma (18), \(x \) is
approximately regular in \(N \) if and only if \(x \) is approximately regular in \(M \),
consequently it suffices to prove the theorem for two summands. Hence let
\(M = N \oplus K \), where \(N \) and \(K \) are
approximately \(Z \)-regular \(R \)-modules.
Consider \(m = x + y \), where \(x \in N \) and
\(y \in K \), since \(x \) is approximately regular in \(N \), then there exists \(\alpha \in N^* \) s.t.
\((\alpha(x))^2 = \alpha(x) \) and \(\alpha \alpha(x) \in JRN \). Extend \(\alpha \) to all \(M \) by putting \(\alpha(K) = 0 \), then \(\alpha(m) = m \alpha_1(x) \alpha_1(x) = x+y - \alpha(x) x - \alpha(x) y = x+y - \alpha(x) x - \alpha(x) y \).
But \(x - \alpha(x) x \in JRN \subset JRM \) by corollary
(14) and since \(K \) is approximately \(Z \)-regular, then for each element of \(K \) is
approximately regular, hence \(y - \alpha(x) y \) is approximately regular in \(K \) and by
lemma (18), it is approximately regular in \(M \).
Conversely direct from lemma (18).

References:

approximately Pointwise Projective Modules, AL-Mustansiriya

The Endomorphism Ring of Approximately Projective Modules, submitted to the 6th
Conference of College of Science of AL-Mustansiriya University.

المقاسات المنتظمة تقريباً

مها عبد العزيز علي*

قسم الرياضيات، الجامعة المستنصرية.

الخلاصة:

هناك تقريباً (غير منكافون) للحلقات المنتظمة (حسب فون نيومان) إلى المقاسات المنتظمة. احدهم حسب مفهوم زيلمان وست والذي هو تقريباً وحسب مفهوم فبلهاوس. في هذا البحث قمنا ودرسنا المقاسات المنتظمة تقريباً وكذلك تعطى عدة خواص وتشخيصات لهذا المفهوم ودرسنا العلاقة بينهم باستخدام المقاسات النقطية الاستجابة تقريباً.