ON m–Topological space
Rana B. Yassen
Dep. of mathematics, College of education for women, University of Tikrit, Tikrit, Iraq
(Received 1/1/2007, Accepted 1/1/2008)

Abstract:
In this paper, we study the m–Compact on m–Topological spaces, and we introduce a same new m–separation axioms of m–Topological spaces $(m-T_0, m-T_1, m-T_2)$ and we proof all m– separation axioms are m– hereditary and m–Topological property.

1- Introduction:
Let (X, τ_X) and (Y, τ_Y) be topological spaces on which m–separation axioms (T_0, T_1, T_2) are assumed unless explicitly stated [3]. A sub class $\tau^* \subseteq \tau$ is called supratopology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union, let (X, τ^*) is called a supratopological space.
The members of τ^* are called supra open sets. We called τ^* asupratopology associated with τ_X if $\tau_X \subseteq \tau^*$ let (X, τ^*_X) and (Y, τ^*_Y) be supratopological. A function $f : (X, \tau^*_X) \rightarrow (Y, \tau^*_Y)$ is an S^*–continuous function if the inverse image of each supra open set in Y is a supra open set in X [1]. let E be a subset of X, E is called an m–set with τ^* if $E \cap T \in \tau^*$ for all $T \in \tau^*$. Then the class τ^*_m of all m–sets with τ^* is contained τ^* called an m– topology with τ^* and the members of τ^*_m are called m– open sets. A subset B of X is called an m– closed set if the complement of B is an m–open set. Thus the intersection of any family of m–closed sets is a m–closed set. in case τ^*_m is an m– topology with τ^* on X the topological spaces (X, τ^*_X, τ^*_Y) with τ^* be denoted by $(X, \tau^*_m)[5]$. The m–closure (resp. m–interior) of a subset E of X will be denoted by $m-\text{CL}(E)$ (resp. $m-\text{int}(E)$) is the intersection of all m– closed subset of X containing E (resp. the union of all m– open subsets of X which is contained in E). We say that a function $f : (X, \tau^*_X) \rightarrow (Y, \mu^*_Y)$ is called m–open function. If the image of any m–open set in X is an m–open set in Y, we say that f is a S^*– homeomorphism if and only if f is bijective, f is supra open function and f is S^*–continuous [5] let P be any property in X, if P is carried by S^*–home to another space Y we say P is a topological property. Let A be subset of X, A m–cover of A is a family of subsets of X whose union includes A. A m– sub cover of A m–cover of A is a sub family of so A m– cover of A.

Lemma 1.1.
Let $f : (X, \tau^*_m) \rightarrow (Y, \mu^*_m)$ be is S^*–continuous function, then function is mS– continuous.

2- $m-T_*$ space induced by m–Topology.
Definition 2.1.
Let (X, τ^*_m) be an m– topological space, then (X, τ^*_m) is called m– T_* space and denoted by $(m-T_*)$ if for any distinct pair of points x, y of X there exists one m–open set U in τ^*_m contains one of the points but not the other.

Example 2.2.
Let $X = \{a, b, c, e\}$ and
$$\tau^* = \{X, \{a\}, \{c\}, \{e\}, \{a, c\}, \{a, e\}, \{a, c, e\}, \{a, b, c\}\}$$
with ϕ then
$$\tau^*_m = \{X, \phi, \{a\}, \{c\}, \{e\}, \{a, c\}, \{a, e\}, \{a, c, e\}, \{a, b, c\}\}$$
is $m-\tau^*_0$.
And we take τ^* is supratopology without empty set thus
$$\tau^*_m = \{X, \{a, b, c\}\}$$is not $m-\tau^*_0$.

Remark 2.3
Every m–open set on (X, τ^*_m) is asupraopenset on (X, τ^*) the converse is not true.

Example 2.4.
Let $X = \{a, b, c, e\}$,
$$\tau^* = \{X, \phi, \{a\}, \{c\}, \{e\}, \{a, c\}, \{a, e\}, \{a, c, e\}, \{a, b, c\}\}$$
and
$$\tau^*_m = \{X, \phi, \{a\}, \{c\}, \{e\}, \{a, c\}, \{a, e\}, \{a, c, e\}, \{a, b, c\}\}$$
notice that each of $\{a, b, c\}, \{a, b, c\}$ is supopen set but not m–open set.

Theorem 2.5.
An m–Topological space (X, τ^*_m) is $m-\tau^*_0$– space if and only if for each pair of distinct points x, y of X, $m-\text{cl}^*(\{x\}) \neq m-\text{cl}^*(\{y\})$.

Proof:
Sufficiency. Suppose that $x, y \in X$, $x \neq y$. Let $z \in X$ such that $z \in m-\text{cl}^*(\{x\})$ but $z \not\in m-\text{cl}^*(\{y\})$. We claim that $x \not\in m-\text{cl}^*(\{y\})$, for $x \in m-\text{cl}^*(\{y\})$ then $m-\text{cl}^*(\{x\}) \subset m-\text{cl}^*(\{y\})$, this contradiction the fact that $z \not\in m-\text{cl}^*(\{y\})$, consequently $x \in (m-\text{cl}(y))^c$ to which y does not belong.
Necessity let \((X, \tau_m)\) be an \(m-T_m\)-space and \(x , y \in X , x \neq y, \exists m - open\) set \(u_m \ni x \in u_m or y \in u_m\) then \(u_m^y\) is an \(m\)-closed set which \(x \in u_m\) and \(y \in u_m^y\). Since \(m-c l (\{y\})\) is the smallest \(m\)-closed set containing \(y\) [because \(m-c l (E) = E \cup (m- \text{int}(E))\], if \(m-c l (\{y\}) \subset u_m\) and therefore \(x \notin m - c l (\{ y\})\). The \(m - c l (\{x\}) \neq m-c l (\{y\})\).

Definition 2.6:

Let \((X, \tau_m)\) be an \(m\)-topological space, let \(E\) be a subset of \(X\) then the \(\tau_m = \{ (E \cap T_m) \in \tau_m \backslash T_m \} \) is \(m\)-open set, is called relative \(m\)-topology space \((m - subspace for short)\).

Example 2.1.

Let \(X = \{a,b,c,e\}, \tau^*\) is supratopology of with empty set and also \(E = \{a,b,c\}\) then \(\tau_{m_e} = \{E, \phi, \{a\}, \{a,c\}, \{b,c\}, \{b,a\}\}\), hence \((E, \tau_{m_e})\) is called relative \(m\)-sub space.

Definition 2.7:

Let \((X, \tau_m)\) be any \(m\)-topological space, if \(p\) is any property in \(X\) then we called \(p\) is \(m\)-hereditary if its appear in a relative \(m\)-topological space if no we say \(p\) is non-\(m\)-hereditary.

Theorem 2.8:

Let \((X, \tau_m)\) be any \(m-T_m\) - space, then the relative \(m\)-topology space \((E, \tau_{m_e})\) is \(m-T_m\).

Proof:

Since \((X, \tau_m)\) is the \(m\)-topology space of \(m - T_0\), let \(e_1 \neq e_2 \in \exists X\) \(m\)-openset \(u_m \ni X\) such that \(u_m\) contains one of \(e_1, e_2\) but not both, since \(E \subseteq X\) let \(x_1, x_2 \in E\), \(e_1 \neq e_2\) now we have \(e_1 \in E \). \(e_2 \in u_m\) then \(e_1 \in E \cap u_m = u_m \) or \(e_2 \in E\) and \(e_2 \in E \) then \(e_2 \in E \cap u_m = u_m \) hence is \(m - T_m\) - space.

Definition 2.9:

A function \(f : (X, \tau_m) \to (Y, \mu_y)\) is \(m\)-homeomorphism if and only if \(f\) is bijective, \(m\)-open function and \(m\)-continuous.

Definition 2.10.

Let \(f : (X, \tau_m) \to (Y, \mu_y)\) be an \(m\)-homeomorphism, let \(p\) any property in \(X\) we say that \(p\) is \(m\)-topological property if \(p\) is appear in \(Y\). **Theorem 2.11.**

The property \(m - T_m\) on \(m\)-topology space is topological property.

Proof:

Let \((X, \tau_m), (Y, \mu_y)\) be an \(m\)-topological spaces \(f : (X, \tau_m) \to (Y, \mu_y)\) a function be \(m\)-homeomorphism.

Let \(y_1 \neq y_2 \in Y\) since \(f\) is bijective, \(\exists y_1 \neq y_2 \in X\) such that \(y_1 = f(x_1), y_2 = f(x_2)\) since \((X, \tau_m)\) is \(m-T_m\)-space, then \(\exists\) one \(m\)-openset \(u_m\) of \(X\) such that \(x_1 \in u_m\), \(x_2 \notin u_m\) or \(x_1 \notin u_m\), \(x_2 \in u_m\) and function \(m\)-open, then \(f(x_1) \in f(u_m)\), \(\forall x_1 \in f(u_m)\), \(x_1 \in u_m\) hence \((Y, \mu_y)\) is \(m-T_m\)-space.

3 - \(m-T_1\) - space induced by \(m\)-topology.

Definition 3.1:

Let \((X, \tau_m)\) be an \(m\)-topological space, then \((X, \tau_m)\) is called \(m-T_1\)-space and denoted by \((m-T_1)\) if for any distinct pair of points \(x, y\) of \(X\) there exists two \(m\)-open sets \(u_m\), \(v_m\) in \(\tau_m\) such that, \(x \in u_m\), \(y \notin v_m\) and \(y \notin u_m\), then \((m-T_1)\) space.

Remark 3.2:

Every \(m-T_1\)-spaces is \(m-T_m\)-spaces but the converse is not true according. From example (2.2) \((X, \tau_m)\) is \(m-T_m\) - spaces but not \(m-T_1\).

Theorem 3.3:

An \(m\)-Topological space \((X, \tau_m)\) is \(m-T_1\)-space if and only if every singleton subset of \(X\) is \(m\)-closed.

Proof:

Suppose \(X = m-T_1\)-space and \(x \in X\) we show that \(\{x\}^c\) is \(m\)-open, let \(y \in \{x\}^c\) then \(x \neq y\), so by \(m-T_1\) there exist an \(m\)-openset \(G_{y}, s.t. x \in G_{y}\) but \(y \notin G_{y}\) hence \(x \in G_{y} \subseteq \{x\}^c\) and \(\{x\}^c = \bigcup \{G_{y} : x \in \{x\}^c\}\).

Conversely, suppose \(\{x\}^c\) is \(m\)-closed for every \(x \in X\) let \(x \neq y \in X\) and \(x \neq y\) implies \(x \in \{y\}^c\) is an \(m\)-open set and \(y \notin \{y\}^c\) is an \(m\)-open set. To show that \((X, \tau_m)\) is \(m-T_1\)-space, since \(\{x\}^c, \{y\}^c\) are \(m\)-open sets, \(x \in \{y\}^c\) and \(y \notin \{x\}^c\) then \(m-T_1\)-space.

Proposition 3.4.

Let \((X, \tau_m)\) be any \(m-T_1\)-space, then the relative \(m\)-topological space \((E, \tau_{m_e})\) is \(m-T_1\).

Proof:

since \((X, \tau_m)\) be an \(m\)-topology space of \(m-T_1\)-space, let \(e_1, e_2 \in X\), \(\exists\) two \(m\)-open sets \(u_m\),
Theorem 3.6.
The property \(m - T_1 \)-space is topological property.

Proof:
Let \((X, \tau_m), (Y, \mu_m) \) be \(m \)-topology spaces
\[
f : (X, \tau_m) \to (Y, \mu_m)
\]
be function is \(m \)-home. Let \(y_1 \neq y_2 \in Y \) since \(f \) is abjective, \(\exists x_1, x_2 \in X \) such that
\[
y_1 = f(x_1), y_2 = f(x_2)
\]
since \((X, \tau_m) \) is \(m - T_1 \). \(\exists \) two an \(m \)-open sets \(u_m, v_m \) of \(X \) such that
\[
x_1 \in u_m, x_2 \notin u_m \quad \text{and} \quad x_2 \in v_m, x_1 \notin v_m.
\]
And \(m \)-open function then
\[
f(x_1) = y_1 = f(u_m)
\]
and \(f(x_2) = y_2 = f(v_m) \) is \(m \)-open hence \((Y, \mu_m) \) is \(m - T_1 \).

4- \(m - T_2 \)-space induced by \(m \)-topology.

Definition 4.1.
Let \((X, \tau_m) \) be an \(m \)-topological space, then \((X, \tau_m) \)
is called \(m - T_2 \)-space and denoted by \(m - T_2 \) if for any distinct pair of points \(x, y \) of \(X \) there exists two disjoint \(m \)-open sets \(u_m, v_m \) in \(\tau_m \) contains them respectively. For example

Let \(X = \{a, b, c, e\} \), \(\tau^* \) is supratopology of \(X \) with empty set
\[
\tau_m = \{X, \phi, \{a\}, \{b\}, \{a, c\}, \{b, a\}, \{e, a\}, \{b, a, e\}, \{b, c\}, \{b, e\}, \{c, a\}\}
\]
is \(m - \tau_1 \) but not \(m - \tau_2 \)

Theorem 4.4.
Let \((X, \tau_m) \) be any \(m - T_2 \) space, then the relative \(m \)-topology space \((E, \tau_{m_E}) \) is \(m - T_2 \)-space.

Proof:
Since \((X, \tau_m) \) be an \(m \)-topology space of \(m - T_2 \)-space, let \(e_1 \neq e_2 \in X \), \(\exists \) two disjoint \(m \)-open sets \(u_m, v_m \) of \(X \), such that \(e_1 \in u_m, e_2 \notin u_m \) and \(e_2 \in v_m, e_1 \notin v_m \). Let \(E \subseteq X \), \(e_1 \neq e_2 \in E \) now we have \(e_1 \in E \), \(e_1 \in u_m \) then \(e_1 \in E \cap u_m = u_{m_E} \) and \(e_2 \in E \), \(e_2 \in v_m \) then \(e_2 \in E \cap v_m = v_{m_E} \). To prove \(u_{m_E} \cap v_{m_E} = \phi \) since
\[
u_{m_E} \cap v_{m_E} = (E \cap u_m) \cap (E \cap v_m) = E \cap (u_m \cap v_m) = E \cap \phi = \phi
\]
then \((E, \tau_{m_E}) \) is \(m - T_2 \)-space.

Theorem 4.5.
The property \(m - T_2 \)-space is topological property.

Proof:
Let \((X, \tau_m), (Y, \mu_m) \) be an \(m \)-topology spaces, since \(f : (X, \tau_m) \to (Y, \mu_m) \), a function is \(m \)-home. Let \(y_1 \neq y_2 \in Y \) since \(f \) is abjective, \(\exists x_1, x_2 \in X \), \(x_1 \neq x_2 \) such that \(y_1 = f(x_1), y_2 = f(x_2) \). Since \((X, \tau_m) \) is \(m - T_2 \), \(\exists \) two disjoint \(m \)-open sets \(u_m, v_m \) of \(X \) continuing the respectively. Sines \(m \)-open function then
\[
f(x_1) = y_1 \in f(u_m) = u_{m_*}
\]
and \(f(x_2) = y_2 \in f(v_m) = v_{m_*} \) are \(m \)-open in \(Y \), since's \(f^{-1} \) is \(m \)-continuous hence \(u_{m_*} \cap v_{m_*} = f(u_m) \cap f(v_m) = f(u_m \cap v_m) = f(\phi) = \phi \) then \((Y, \mu_m) \) is \(m - T_2 \).

A \(m - T_2 \) is \(m \)-compact if each \(m \)-open covering has affine \(m \)-sub covering.

Example 4.7.
Let \(X = \{a, b, c, e\} \), \(\tau^* \) is supratopology of \(X \) with empty set,
\[
\tau_m = \{[X, \phi, \{a\}, \{b\}, \{a, c\}, \{b, a\}, \{e, a\}, \{b, a, e\}, \{b, c\}, \{b, e\}, \{c, a\}\}
\]
is clearly every \(m - T_2 \)-space is \(m \)-compact. Hence
\[
m - T_2 \text{ is } m \text{- compact if and only if is finite.}
\]

Theorem 4.8.
\(m \)-compactness is a topological property.

Proof:
Let \((X, \tau_m) \) be an \(m \)-compact space. Since \(f : (X, \tau_m) \to (Y, \mu_m) \) be function is \(m \)-home. To show that \((Y, \mu_m) \) is \(m \)-compact space. let \(\{u_m \} \) be an \(m \)-open cover \(Y \). Then \(Y \subseteq \bigcup u_m \) since's \(f \) is \(m \)-continuous, \(f^{-1}(u_m) = v_m \) hence \(v_m \) are \(m \)-open sub set of \(X \). Since \(X \) is \(m \)-compact and
\[
x \subseteq \bigcup v_m \Rightarrow y = f(x) \in \bigcup u_m \Rightarrow y \in u_m \text{ then } (Y, \mu_m) \text{ is } m \text{- compact space.}
\]

Theorem 4.9.
Let \((X, \tau_m) \) is \(m \)-compact space if and only if for each family \(\{H_\alpha : \alpha \in I\} \) of \(m \)-closed sets in \(X \)
satisfying $\bigcap_{a=1}^{n} H_a = \phi$, there is a finite sub family $H_{a_1}, ..., H_{a_m}$ with $\bigcap_{i=1}^{m} H_{a_i} = \phi$.

Proof:
Suppose (X, τ_m) is m-compact space, let $\forall \{H_\alpha : \alpha \in I\}$ of m-closed sets in X, $\bigcap_{\alpha} H_\alpha = \phi$. Then by De Morgan’s law $X = \bigcup_{\alpha} H_\alpha^c$, so $\{H_\alpha^c\}$ is m-open cover of X, since each H_α^c is m-closed. But X is m-compact, hence $\exists H_{a_1}^c, H_{a_2}^c, ..., H_{a_m}^c \subseteq \{H_\alpha^c\}$ s.t. $X = H_{a_1}^c \cup H_{a_2}^c \cup ... \cup H_{a_m}^c$ thus by De Morgan’s law, $\phi = \bigcap_{i=1}^{n} H_{a_i}$.

Conversely. Let $\{G_\alpha\}$ be an m-open cover of X, $X = \bigcup_{\alpha} G_\alpha$ by De Morgan’s law $x = x = (\bigcup_{\alpha} G_\alpha)^c = \bigcap_{\alpha} G_\alpha^c$. Since each G_α is m-open, $\{G_\alpha^c\}$ is a class of m-closed set. Hence $\exists G_{a_1}^c, G_{a_2}^c, ..., G_{a_m}^c$ s.t. $X = G_{a_1}^c \cup G_{a_2}^c \cup ... \cup G_{a_m}^c$ thus by De Morgan’s law, $\phi = \bigcup_{i=1}^{m} G_{a_i}$.

Proposition 4.10.
Any m-closed subspace of m-compact space is m-compact.

Proposition 4.11.
Every m-compact subset of $m-T_2$-space is m-closed.

Proof:
Let K be an m-compact subset of $m-T_2$-space of X. Let $x \in X \setminus K$. For each $y \in K$, \exists disjoint m-open U_y and V_y of Y and X respectively. then $\{U_y\}$ is an m-open cover K which to a finite sub covering $\{U_{y_i}\}_{i=1}^{n}$, say K is m-compact. Let V_i be the m-open of X for $i = 1, 2, ..., n$ then $\bigcap_{i=1}^{n} V_i$ is m-open of X and $\bigcap_{i=1}^{n} U_{y_i} = \phi, \forall i = 1, 2, ..., n$ implies that $x \not\in V \subseteq X \setminus K$ this $X \setminus K$ is m-open and K is m-closed.

Proposition 4.12.
The image of any K m-closed subset of m-compact space is m-closed is $m-T_2$-space under ms-continuous.

Proof:
By **Proposition 4.10** K is m-compact space if $f : (X, \tau_m) \rightarrow (X, \tau_m)$ is ms-continuous, then $f(K)$ is m-compact by (4.11) hence m-closed, $m-T_2$-space.

Theorem 4.13.
Let (X, τ_m) be an m-compact, Y be $m-T_2$-space and $f : (X, \tau_m) \rightarrow (Y, \mu_m)$ ms-continuous then f is m-closed map.

Proof:
Let $A \subseteq X$ be an m-closed it is m-compact and consequently so is $f(A)$ since Y is $m-T_2$-space, then $f(A)$ is m-closed in Y.

References

2. J.Dugundji, topology, library of congress catalog card number :66-10940, printed in the United States of America

حول الفضاءات التبولوجيه

منا بهجت ياسين
قسم الرياضيات , كلية التربية للبنات , جامعة تكريت , تكريت , العراق

المتخص

في هذا البحث درسنا تراص على الفضاءات التبولوجية ود ع نا تعريفا جديدا لبعض بديهيات الفصل وبرناها بان كل بديهيات الفصل - والصفة التبولوجية $(m - T_0, m - T_1, m - T_2)$