Experimental Study Of Vegetable Oil -Diesel Blends On The performance Of Compression Ignition Engine

Ibrahim Thamer Nazzal
Assistant Lecturer,
Mechanical Engineering. Department / College Of Engineering
University Of Tikrit
Ibrahim_th78@yahoo.com

ABSTRACT.
The aim of the study is to investigate the effects of vegetable blends on the performance of single cylinder compression ignition engine. The three types of vegetable oil appeared to affect the engine performance in a similar way and compared well with diesel fuel, this paper included prepared four samples fuels. They include (10% sunflower oil- 90% diesel blends), (10% olive oil – 90% diesel blends), (10% corn oil- 90% diesel blends) and pure diesel. The testing achieved between different fuel simples by using the engine four stroke type (TD111) with a single-cylinder and compression ratio (21:1).

The results show that there is decreasing in parameters performance of engine with using vegetable fuel blends, the brake power decrease as (7.4%), (5.2%) and (1.3%) with using the samples (10% olive oil – 90% diesel blends), (10% sunflower oil- 90% diesel blends), and (10% corn oil- 90% diesel blends) respectively compared with pure diesel fuel for the engine speed of 2000 r.p.m. While at same engine speed the η_{bth} showed a decrease as (10.9%), (7.5%) and (5.8%) with using the (10% olive oil – 90% diesel blends), (10% sunflower oil- 90% diesel blends), and (10% corn oil- 90% diesel blends) respectively compared with pure diesel fuel. At the same time, it can be found that bsfc also increases as (7.9%), (5.7%) and (2.4%) with using (10% olive oil – 90% diesel blends), (10% sunflower oil- 90% diesel blends), and (10% corn oil- 90% diesel blends) compared to pure diesel fuel. The exhaust gas temperature decrease as (7 °C), (5 °C) & (3 °C) with using the samples (10% olive oil – 90% diesel blends), (10% sunflower oil- 90% diesel blends), and (10% corn oil- 90% diesel blends) respectively compared with pure diesel fuel for the engine speed of 2000 r.p.m.

Keywords: performance, blends, vegetable oil, alternative fuels, compression ignition engine.

1- INTRODUCTION.
Diesel engines are the major sources of transportation power generation, marine application etc. Although more fuel efficient than their spark ignited counterpart, they have relatively higher emissions and noise level. Hence, diesel is being used extensively, but due to gradual depletion of fossil fuel reserves and the impact of environmental pollution of increasing exhaust emissions there is an urgent need for suitable alternative fuels for use in C.I. engines. Vegetable oil is one obvious fuel particularly because their fuel properties are closer to diesel fuel. Two important properties, the cetane number and the calorific value are similar to diesel. Hence diesel engines can be operated on vegetable oil without modification[1].

The use of vegetable oils as a source of energy has been known for a long time since the very first creation of the Diesel engine. Vegetable oils are biodegradable and nontoxic. have low emission profiles, are made from renewable resources and so are environmentally beneficial. various oils like jatropha, methyl esters of palm oil, sunflower, cotton seed in
coconut mahura oil, deccan hemp oil are considered as alternate fuels to diesel which are promising alternates because they have the advantage they are renewable environmentally friendly and produced. Vegetable oil esters are receiving increasing attention as a non-toxic, biodegradable, and renewable alternative diesel fuel[2]. These esters have become known as “biodiesel.” Since biodiesel is produced from vegetable oils and animal fats, the properties of finished biodiesel depend mainly on the feedstock. It offers many advantages such as it is renewable, energy efficient, nontoxic, sulfur free and biodegradable, and also it usually takes cleaner combustion and reduces global warming gas emissions from the diesel engines. Biodiesel is also called as Fatty acid Methyl ester. Most vegetable oils can be converted into biodiesel but the cost of the vegetable oil feedstock is now a key factor in the least cost production of biodiesel for blending with fossil fuel diesel [2].

From previous studies it is evident that there are various problems associated with vegetable oils being used in compression ignition C.I. engines mainly caused by their high viscosity, volatility, ring sticking and gum deposits. The viscosity is due to the large molecular mass and chemical structure of vegetable oils which in turn lead to problems in pumping, combustion and atomization in the injector systems of diesel engine. Therefore, reduction in viscosity is of prime importance to make vegetable oils suitable alternate fuel for diesel engines [3]. The problem of high viscosity of vegetable oils has been approached in several ways, such as preheating the oils, blends or dilution and with other fuels. Therefore the paper study of vegetable oil -diesel blends on the performance of compression ignition engines [3].

In 2003 Khaled R. Asfar and etal [4] has an experimental study of using fuel blends, composed of diesel oil with olive oil and isobutanol alcohol as additives in various percentages, in compression ignition engines is presented. The engine used is a single-cylinder, four-stroke, water-cooled, variable compression ratio engine. The effect of various blends on the brake specific fuel consumption, exhaust soot mass concentration is investigated. They study shows, for blends of diesel and iso-butanol, a considerable drop in soot is obtained for a 5% and 10% pure iso-butanol with diesel. The brake specific fuel consumption increases with alcohol addition. Adding 5% to 10% iso-butanol to 10% olive oil-diesel mixtures as compared to pure diesel.

In 2003 M. Canakci and etal [5] expressed in their paper comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. The experiments were carried out on a single cylinder direct injection diesel engine by fuelling Five kinds of pure Fatty acid Methyl ester (FAME) are methyl laurate, methyl myristate, methyl palmitate, methyl stearate and methyl oleate, the performance and emissions of diesel engine with the above fatty acids are studied. The conclusions of this study. Both of the methyl esters and their blends gave nearly identical thermal efficiencies with diesel fuel. The bsfc for the esters were higher than for diesel fuel. The higher bsfc for the net esters may be attributed to their lower heating values. The heating values of the methyl esters are about 12% less than for diesel fuel.

In 2008[6] P. Pavi. Kumar and etal studied performance of C.I. engine using blends of methyl esters of palm oil with diesel the study on the single cylinder 4-stroke naturally aspirated compression ignition engine using alternating fuel like methyl esters of palm oil. The compression of properties like viscosity, density, flash point, could point etc. of different mixture of diesel and methyl esters of palm oil etc. are been examined in the study. Briefly the suitability of alternating fuels to diesel engine, the vegetable oil, methyl esters of palm oil is chosen as alternative to diesel, which is due to its agricultural origin is able to reduce net carbon dioxide emissions, the biggest hindrance to the easily adaptation of these vegetable oils is high viscosity and low volatility. In the performance analysis, the acquired
data will useful to predict the thermal efficiency , brake specific fuel consumption , carbon
dioxide, carbon dioxide and hydrocarbon .

In 2009[7] Rehman, A.1, Pandey and etal expressed in their paper. performance and
emission evaluation of diesel engine fueled with vegetable oil .To ascertain the possibility of
use of modified karanja oil as fuel for compression ignition engine the performance test were
conducted. The comparison of the test fuels made with diesel fuel. Test fuels’ performance
analyzed for esters of karanja oil, blends of karanja oil, and the diesel oil as baseline at
varying loads performed at governor controlled speed. The variations in the injection
parameters were analyzed to observe its influence on the engine performance with different
fuels. results show that diesel engine gives poor performance at lower Injection Pressure than,
esterified karanja oil and its blends with diesel. Specific energy consumption is a more
reliable parameter for comparison. A comparison of physical and fuel properties of vegetable
oils with those of diesel fuel indicates that the vegetable oil are quite similar in nature to
diesel fuel. However, vegetable oils have exceptionally high viscosity. After esterification of
karanja oil, the specific gravity reduced to 0.895 at 280°C and for diesel at the same
temperature was 0.84. The calorific value of esterified karanja oil found to be 36.76 MJ/kg,
which is 17.95% lower than that of diesel. The specific Energy consumption is higher for pure
caranja methyl ester as well as for its blends with diesel .

In 2010[8] T. Hari prasad and etal has investigate the effect of the biodiesel produced
from high free fatty acid feed stocks on engine performance and emissions. Two different
biodiesels were prepared from animal fat–based yellow grease with 9% free fatty acids and
from soybean oil. The net fuels and their 20% blends with diesel fuel were studied at steady–
state engine operating conditions in a four–cylinder turbocharged diesel engine . The brake
thermal efficiencies of all Fatty acid Methyl ester (FAME) fuels are almost the same .

2- EXPERIMENTAL APPARATUS.

2-1- Fuel Preparation.

Three different types of vegetable oil diesel blends have been chosen for use in this
paper. They include (10% sunflower oil- diesel blends) , (10% olive oil - diesel blends), (10%
corn oil- diesel blends) and pure diesel . The vegetable oils were obtained from commercial
suppliers for all cases. Properties of the different blends oils along with commercially
available diesel fuel are shown in Table (1). The experimental research was performed on
samples fuels prepared and tested in research laboratories and quality control of north
refineries company . The research engine used in this paper was type (TD111)[9]. The engine
is a 230cc, single cylinder type, and has a bore of 70 mm and a stroke of 60 mm. The
combustion chamber is cylindrical in shape with a compression ratio of 21: 1. The 4-stroke,
naturally aspirated, air-cooled, compression ignition engine is nominally rated at 3.5 kW at
3600 r.p.m . The engine is coupled to TD115 hydraulic a dynamometer for measure the
engine torque and load control . The main characteristics of the engine are listed in table (2).
TD114 instrumentation unit is designed to stand beside the engine under test. in addition to
housing the instruments for measuring the engine performance , front view of the
instrumentation unit is shown in picture (1) .the air consumption box viscous flow meter in
TD114 instrumentation unit was used to measured the air flow of the engine . Engine speed
was measured by movistrobe tachometer has range (150-4000) r.p.m ., fuel mass flow rate
was measured using stopwatch and calibrated glass tube divided into three 8,16 ,32 ml , in
the TD114 instrumentation unit , the fuel consumption is determined by measuring the time
taken for the engine consume given volume for fuel say 8ml. Type K (Ni-Cr)/(Ni-AL)
thermocouples, connected to TD114 were installed to measure Exhaust gas temperatures at
the outlet pipes . The schematic diagram of the experimental set up is shown in Fig. (1) .
2-2 TEST PROCEDURES.

Preliminary engine conditioning was necessary to prepare the engine at steady operating condition. Initially, the engine was run through a warm-up procedure on diesel fuel also the engine run on by handle. The procedure began with normal operation at idling speed. The engine performance carried out with fuel blends was accomplished under condition similar to those occurring if the fuel was substituted for diesel fuel without any modification to the engine. These tests were performed at engine speed ranges from 500 to 3000 r.p.m. with increment 500 r.p.m. The required engine load was obtained through the hydraulic dynamometer. Before running the engine to a new fuel blend, it was allowed to run for sufficient time to consume the left fuel from the previous experiment. Baseline tests were conducted with 100% diesel fuel also (10% sunflower oil-diesel blends), (10% olive oil-diesel blends), (10% corn oil-diesel blends) was used in the engine to compare with the baseline data at the same operating conditions. The experimental data measurements could then be performed for different fuel blends. The operating conditions were stabilized and the variables that were continuously measured were recorded. This included dynamometer speed, torque, time required to consume 8 ml of fuels, pressure drop and the exhaust gas temperature.

The engine performance parameters such as brake power, brake specific fuel consumption and thermal brake efficiency were estimated using the following equation:

\[BP = 2\pi N\tau \] \hspace{1cm} (1)

\[BS.F.C = \frac{\dot{m}_f}{BP} \] \hspace{1cm} (2)

\[\eta_{bth} = \frac{BP}{\dot{m}_f \times Q_{HV} \times \eta_C} \] \hspace{1cm} (3)

Depending on the above equations the performance of engine is calculated and graph the parameter after assuming the combustion efficiency is 97%.

3- RESULTS AND DISCUSSIONS.

The experiments in the unmodified TD111 engine fueled with four types of fuel blends included the brake power, brake thermal efficiency, A/F, brake fuel consumption under various speeds, test runs were made on straight diesel fuel in order to make comparative assessments. Since a large amount of data was collected, only summary data is reported here in this paper as graphic. The properties of vegetable oil - diesel blends and pure diesel fuel blends are shown in Table (1). The cetane number of vegetable oil-diesel blends is lower than that of pure diesel fuel. Cetane Number is a measure of the readiness of a fuel to auto-ignite when injected into a diesel engine. Cetane numbers are established by comparing the test fuel to two standard reference fuels. The fuel component n-cetane (hexadecane), C16H34, is given the cetane number value of 100, while heptamethylnonane (HMN), C12H34, is given the value of 15. To investigate the effect of cetane number on the performance, a mixture of materials normally found in vegetable oil was produced and blended with both diesel fuel. Contained heptamethylnonane (HMN), C12H34, more than pure diesl. Therefore, the amount of vegetable oil - diesel fuel blends should be greater than that of diesel fuel to achieve the same energy output. The difference in viscosity between the vegetable oil-diesel blends and
diesel was about tenfold, the viscosity of vegetable oil-diesel blends is higher than that of pure diesel fuel. The engine performance parameters obtained from the analysis of the experimental data are demonstrated in Figs. (2 to 6) and expressed in terms of the volume percentage of vegetable oil-diesel fuel blends in order to quantify the effect of vegetable oil blends addition in diesel fuel on engine performance.

Fig. (2) shows brake power as function of speed for four samples fuels (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), (10% corn oil-90% diesel blends) and pure diesel. This figure clearly indicates that brake power increases as the engine speed increases for all fuels. Also, the figure presents that brake power decreases as (7.4%), (5.2%) and (1.3%) with using the samples (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends) and (10% corn oil-90% diesel blends) respectively compared with pure diesel fuel for the engine speed of 2000 r.p.m. due to the decrease in air-fuel mixture temperature at the beginning of the combustion stroke resulted from the decreases in the lower heating value of the vegetable oil - diesel blends. Consequently, combustion temperature decreases and also one possible reason for this may be the viscosity of the oils diesel blends as this property alters spray characteristics at the time of injection and can delay the combustion process in the engine. The lower cetane number also has the effect of increasing the ignition delay, thus brake power decreases for all the vegetable oil - diesel blends.

The effect of four samples fuels (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), (10% corn oil-90% diesel blends) and pure diesel fuel on engine brake thermal efficiency (η_{bth}) at different engine speed is shown in Fig. (3). It is clear that η_{bth} increases as the engine speed increases for all fuels. Also, contrary to the behavior of η_{bth} showed a decrease as (10.9%), (7.5%) and (5.8%) with using the samples (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends) and (10% corn oil-90% diesel blends) respectively compared with pure diesel fuel for the engine speed of 2500 r.p.m., the explanation for this behavior lies in the lower brake power of the vegetable oil - diesel blends. this can be attributed to slight increase in bsfc, a slight decrease in the exhaust temperature and A/F at this speed comparing to diesel fuel.

While fig. (4) shows bsfc as function of speed for four samples fuels (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), (10% corn oil-90% diesel blends) and pure diesel fuel. As shown in the figure, bsfc increases as the engine speed decreases and reach minimum speed value at (2000) r.p.m. and then increasing with increase the speed for all fuel blends. At the same time, it can be found that bsfc also increases as (7.9%), (5.7%) and (2.4%) with using ((10% olive oil - 90% diesel blends), (10% sunflower oil-90% diesel blends) and (10% corn oil-90% diesel blends) respectively compared to pure diesel fuel. This behavior was reasonable in view of the fact that the engine would consume more fuel with fuel blends than with pure diesel fuel to generate the same power output, due to the decrease in the lower heating value of fuel blends, hence the increase bsfc. At these corresponding conditions the difference in viscosity between the vegetable oil-diesel blends and diesel was about tenfold the viscosity of vegetable oil-diesel blends is higher than that of pure diesel fuel. It can be seen that diesel had bsfc lower than the row vegetable oil-diesel blends. The results obtained implied that the overall combustion rate for the vegetable oils was somewhat slower than that for the diesel fuel.

Exhaust gas temperature against the engine speed for four samples fuels (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), (10% corn oil-90% diesel blends) and pure diesel presented in fig. (5). As shown in the figure the exhaust gas temperature increases as the engine speed increases for all fuels. On the other hand, it is found that exhaust gas temperature decrease about (7°C), (5°C), (3°C) for the oils diesel blends samples (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), (10% corn oil-90% diesel blends), (10% corn oil-90% diesel blends).
(10% corn oil- diesel blends) respectively compared to pure diesel fuel for the engine speed of 2500 r.p.m. This behavior can be attributed to the following factors: exhaust gas temperature is an indication of combustion temperature which is a function of ignition time. Diesel fuel has smallest ignition time related to the fuel heat of vaporization and the heating value. Therefore with vegetable oil-diesel blends combustion temperature and exhaust gas decreases according to the type of oil vegetable. Furthermore, the decrease in exhaust gas temperature is more evident for olive in the blends. This behavior is expected because the amount of fuel consumed by the engine is higher than that of other fuel blends. Consequently, the heat losses (i.e., the increase in ignition time) and the decrease in the heating value increase, hence exhaust gas temperature decreases. Moreover, using the oils diesel blends samples (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), and (10% corn oil-90% diesel blends) decrease in the exhaust gas temperature. This confirms the behavior of exhaust gas temperature. This can be attributed to a slight decrease in bsfc, a slight increase in exhaust gas temperature.

4. CONCLUSIONS.

The effect of the vegetable oil to the diesel fuel on the performance of single cylinder compression ignition engine was investigated and compared to the base line diesel fuel. The main results obtained can be summarized as follows:

1. Exhaust temperature and brake power are decreased with using the oils diesel blends samples (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), and (10% corn oil-90% diesel blends) respectively due to the increase in the heat of vaporization fuel blends. Also, it should be noticed that (10% corn oil-90% diesel blends) seemed to perform better than (10% sunflower oil-90% diesel blends) while the (10% olive oil-90% diesel blends) is smaller in term brake power and exhaust temperature. The lower cetane number also has the effect of increasing the ignition delay, thus brake power decreases for all the vegetable oil - diesel blends.

2. Brake specific fuel consumption increased for oils diesel blends samples (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), and (10% corn oil-90% diesel blends) respectively due to the decrease in the lower heating value of fuel blends. Also, it should be noticed that (10% corn oil-90% diesel blends) seemed to perform better than (10% sunflower oil-90% diesel blends) while the (10% olive oil-90% diesel blends) is smaller in term brake specific fuel consumption. This behavior was reasonable in view of the fact that the engine would consume more fuel with fuel blends than with pure diesel fuel to generate the same power output, due to the decrease in the lower heating value of fuel blends, hence the increase bsfc.

3. Brake thermal efficiency decreased for oils diesel blends samples (10% olive oil-90% diesel blends), (10% sunflower oil-90% diesel blends), and (10% corn oil-90% diesel blends) respectively due to the increase in brake specific fuel consumption and decrease in combustion temperature. Also it should be noticed that (10% corn oil-90% diesel blends) seemed to perform better than (10% sunflower oil-90% diesel blends) while the (10% olive oil-90% diesel blends) is smaller in term brake thermal efficiency. The explanation for this behavior lies in the lower brake power of the vegetable oil - diesel blends. This can be attributed to slight increase in bsfc, a slight decrease in the exhaust temperature and A/F at this speed comparing to diesel fuel.

4. It should be noticed that (10% corn oil-90% diesel blends) seemed to perform better than (10% sunflower oil-90% diesel blends) while the (10% olive oil-90% diesel blends) is smaller in terms of engine performance. Pure vegetable oils have been considered as alternatives for diesel fuel, but the high viscosity at room temperature made them unsuitable for diesel engines. Vegetable oil has potential as an alternative
energy source. However, vegetable oil alone will not solve our dependence on oil within any practical time frame. The economics of vegetable oil blends fuels compared to traditional petroleum resources are marginal. But much more will be required if vegetable oils are to achieve their potential in world.

5 - REFERENCES.

6 - NOMENCLATURE.
A.P.I American petrol instituting.
BP brake power.
bsfc brake specific fuel consumption.
E.B.P end boiling point.
I.B.P initial boiling point.
mf mass flow rate of fuel.
QHV heating value.

GREEK LETTERS.
\(\tau \) torque.
\(\eta_c \) combustion efficiency.
\(\eta_{bth} \) brake thermal efficiency.
Table (1): the properties of fourth sample of diesel fuel.

<table>
<thead>
<tr>
<th>Test</th>
<th>(10% corn oil - 90% diesel blends)</th>
<th>(10% olive oil - 90% diesel blends)</th>
<th>(10% sunflower oil - 90% diesel blends)</th>
<th>Pure diesel fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity @ 15.6 °C</td>
<td>0.8417</td>
<td>0.8417</td>
<td>0.8417</td>
<td>0.8337</td>
</tr>
<tr>
<td>A.P.I</td>
<td>36.6</td>
<td>36.6</td>
<td>36.6</td>
<td>38.2</td>
</tr>
<tr>
<td>Colour</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Flash point °C</td>
<td>60</td>
<td>65</td>
<td>67</td>
<td>61</td>
</tr>
<tr>
<td>Pour point</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>Viscosity (CST) @40 °C</td>
<td>3.7</td>
<td>3.7</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Cetane</td>
<td>53.4</td>
<td>52.874</td>
<td>52.874</td>
<td>55.268</td>
</tr>
</tbody>
</table>

Distillation

<table>
<thead>
<tr>
<th>Test</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.B.P</td>
<td>170</td>
<td>212</td>
<td>252</td>
<td>270</td>
<td>283</td>
<td>300</td>
<td>316</td>
<td>342</td>
<td>360</td>
</tr>
<tr>
<td>5%</td>
<td>195</td>
<td>212</td>
<td>252</td>
<td>270</td>
<td>283</td>
<td>300</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>10%</td>
<td>212</td>
<td>233</td>
<td>252</td>
<td>270</td>
<td>283</td>
<td>300</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>20%</td>
<td>233</td>
<td>252</td>
<td>270</td>
<td>283</td>
<td>300</td>
<td>300</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>30%</td>
<td>252</td>
<td>270</td>
<td>283</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>40%</td>
<td>270</td>
<td>283</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>50%</td>
<td>283</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>60%</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>70%</td>
<td>316</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>80%</td>
<td>342</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>90%</td>
<td>355</td>
<td>354</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>95%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E.B.P</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>T.D</td>
<td>90%</td>
<td>91%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>Res.</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Loss.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table (2): the specification of the used engine.

<table>
<thead>
<tr>
<th>Type of engine</th>
<th>TD111 single cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>The No of stroke</td>
<td>4- stroke</td>
</tr>
<tr>
<td>bore</td>
<td>70mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>60mm</td>
</tr>
<tr>
<td>Displacement volume</td>
<td>230 CC</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>21:1</td>
</tr>
<tr>
<td>Mechanical efficiency</td>
<td>81%</td>
</tr>
<tr>
<td>Max. speed</td>
<td>3600 R.P.M</td>
</tr>
<tr>
<td>Max. power</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Figure (1): show The schematic diagram of the experimental set up of engine (TD11), instrument TD114 and hydraulic dynamometer TD115.

Picture (1): (TD114) instrumentation unit.
Figure (2): Effect of fuel blends types on the brake power (BP) at different speeds.

Figure (3): Effect of fuel blends types on the brake thermal efficiency at different speeds.
Figure (4): effect of fuel blends types on the bsfc at difference speeds.

Figure (5): effect of fuel blends types on the exhaust temperature at difference speeds.
دراسة عملية تخليط الزيوت النباتية. وقود الديزل على أداء محرك إشعال انضغاطي

إبراهيم ثامر نزال
مدرس مساعد
قسم الهندسة الميكانيكية
كلية الهندسة/ جامعة تكريت

الخلاصة.

أن الهدف من البحث هو دراسة تأثير خليط الدهون النباتية - ديلز على أداء محرك إشعال انضغاطي اضاغطيي أحدي الاستوانته. تم في هذا البحث استخدام ثلاثة أنواع من الخلافات وهي (خليلي 10% زيت الزيتون - ديلز)، (خليلي 10% زيت عباد الشمس - 90% ديلز) و(خليلي 10% زيت الزيتون - 90% ديلز) و(خليلي 10% زيت الذرة - 90% ديلز) بالنسب (7.4%) و(1.3%) على التوالى بالمقارنة مع وقود الديزل النقي. وتم دراسة تأثير هذه الخلافات للوقود على الأداء ومقارنتها مع وقود الديزل النقي. أجريت الاختبارات باستخدام محرك ثنائي الأشواط نوع (TD111) أحدي الاستوانته دو. (TD114)

أظهرت النتائج أن هناك تناقص في معاملات الأداء حيث تقل القوة الميكانيكية مع استخدام الخلافات الثلاثة (خليلي 10% زيت الزيتون - 90% ديلز)، (خليلي 10% زيت عباد الشمس - 90% ديلز) و (خليلي 10% زيت الزيتون - 90% ديلز) بالنسب (7.4%) و(1.3%) على التوالى بالمقارنة مع وقود الديزل النقي عند السرعة الدورانية (2000) دورا في الدقيقة. في حين عند نفس السرعة الدورانية تزداد الكفاءة الحرارية الميكانيكية مع استخدام (خليلي 10% زيت الزيتون - 90% ديلز)، (خليلي 10% زيت عباد الشمس - 90% ديلز) و (خليلي 10% زيت الذرة - 90% ديلز) بالنسب (10.9%) و(5.7%) على التوالى بالمقارنة مع وقود الديزل. وفي نفس الوقت نجد ان الاستهلاك النوعي المكحيز يزداد مع استخدام (خليلي 10% زيت الزيتون - 90% ديلز)، (خليلي 10% زيت عباد الشمس - 90% ديلز) و (خليلي 10% زيت الذرة - 90% ديلز) بالنسب (7.9%) و(2.4%) على التوالى بالمقارنة مع وقود الديزل النقي عند السرعة الدورانية نفسها. درجة حرارة العادم تقل ب - (7)، (5) و(3) درجة منوية مع استخدام (خليلي 10% زيت الزيتون - 90% ديلز)، (خليلي 10% زيت عباد الشمس - 90% ديلز) و (خليلي 10% زيت الذرة - 90% ديلز) على التوالى بالمقارنة مع وقود الديزل النقي عند السرعة الدورانية نفسها.

كلمات رئيسية: الأداء، الخلافات، الدهون النباتية، بدائل الوقود، محركات الإشعال الانضغاطي .