تأثير حامض البرولين وكلوريد الصوديوم في الحالة الغذائية لنباتات الحنطة

أ.د.عباس جاسم حسن الساعدي
قسم علوم الحياة/ كلية التربية ابن الربیم / جامعة بغداد
م.م. هلال محمود الفازر
قسم علوم الحياة/ كلية التربية ابن الربیم / جامعة بغداد
الهيئة العامة للبحث الزراعي / وزارة الزراعة
د.عبد الكريم حسن حسن

الخلاصة

نُفذت تجربة أصول في البيوت الزجاجي الالية لقسم علوم الحياة/ كلية التربية ابن الربیم/ جامعة بغداد بمسمى البرومعالم 2009-2010 لدراسة تأثير التداخل بين رش حامض البرولين والكودريد الصوديوم (كلور) (H2O2) ورش الصلبة الفوسفورية (F2O3) ورش البرومي الاسبية (Ag2O) على نباتات بحاصص البرولين والكودريد الصوديوم. وقد أظهرت النتائج أن زيادة تركيز كلوريد الصوديوم في وسط النمو من (150 ملليوم/لتر) إلى زيادة معينة في قيم تلك الصماد، وإما تأثير التداخل بين حامض البرولين والكودريد الصوديوم فقد أوضح النتائج أن زرع النباتات بحاصص البرولين كان لتبديل بعض الناتج الدوال السلبية نتيجة التراكيز khángية للكودريد الصوديوم في جميع الصفات الفضائية. للمدة.

المقدمة

تعتبر الخلاصة مواقف من أهم المشاكل التي تواجه زراعة محاصيل الحبوب في عدد من مناطق العالم وخاصة المناطق الحافرة وشبه الحافة (1984)، ويعتبر محصول الحنطة من أهم محاصيل الحبوب باعتباره المادة الأساسية في غذاء الإنسان لاحتواءه على نسبة جيدة من البرولين وعلى عناصر معينة أخرى والمصدر الرئيسي للطاقة (اليونس وآخرون 1987).

بعد الإنجذاب الرسمي من أهم التحديات التي تواجه زراعة هذا المحصول في العراق، وعلى أيدي الأمر* مُستشفى رسالة ماجستير للباحث التالي.

مراجعات

1. تأثير حامض البرولين وكلوريد الصوديوم في الحالة الغذائية لنباتات الحنطة
2. تأثير حامض البرولين وكلوريد الصوديوم في الحالة الغذائية لنباتات الحنطة
3. تأثير حامض البرولين وكلوريد الصوديوم في الحالة الغذائية لنباتات الحنطة
4. تأثير حامض البرولين وكلوريد الصوديوم في الحالة الغذائية لنباتات الحنطة
5. تأثير حامض البرولين وكلوريد الصوديوم في الحالة الغذائية لنباتات الحنطة

(*) من المحتمل أن تكون هذه الأدبيات محدودة ولكنها تؤكد على أهمية التأثيرات المثبتة للأمراض في الحفاظ على منتجات الحبوب في العراق.
المواد وطرق العمل

اجريت التجربة في البيوت الزراعية التابعة لقسم علوم الحياة وكلية التربية ابن الهيثم/جامعة بغداد لموسم النمو 2008-2009، إذ جلب التربة من أحد الحقول الزراعية التابعة للهيئة العامة للبحوث الزراعية في منطقة أبو غريب، وقدر فيها بعض الصفات الكيميائية والفيزيائية حسب الطرق الموصوفة في (Page et al., 1982).

جدول (1) بعض الصفات الكيميائية والفيزيائية للتربة المستخدمة في الدراسة

<table>
<thead>
<tr>
<th>الماد</th>
<th>pH</th>
<th>نسبة الاتصال الكهربائي (ديسيمنز م–1)</th>
<th>مفصولات التربة (ذم، كغم–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>P</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>111.60</td>
<td>5.80</td>
<td>47.2</td>
<td>7.10</td>
</tr>
<tr>
<td>3.01</td>
<td>188</td>
<td>511</td>
<td>0.30</td>
</tr>
</tbody>
</table>

جنفت التربة هوليا ثم سمحت وسررت من منعك قطر فتحاتها (2) ملم ثم عينت في الاصطناع الفخري بلغور (3) سم وبونزن (7) كغم لكل امتصاص. صممت التجربة وفق التصميم العشوائي الكامل كتجربة عاملية (4) وثلاثة مكررات بحيث تضمنت العوامل التالية:...

1- أربعة تراكيز مذ كليوريد الصوديوم هي (0.00، 0.1، 0.5، 1.0) مم-لتر.

والجدول (2) يوضح تراكيز كليوريد الصوديوم التي استعملت في التجربة معبرة عنها ملم-لتر. من مبادئ التوصيل الكهربائي للمحلول اللمحي (ديسيمنز م–1).

جدول (2) تراكيز كليوريد الصوديوم معبرة عنها ملم-لتر وبالنسبة إلى التوصيل الكهربائي (ديسيمنز م–1)

<table>
<thead>
<tr>
<th>تركيز كليوريد الصوديوم (مين)</th>
<th>التوصيل الكهربائي (ديسيمنز م–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
حيث تم تحضير محلول رئيسي من كلوريد الصوديوم بتركيز (1 mol/L) ثم حضرت منه التراكيز المطلوبة أعلاه من كلوريد الصوديوم وحسب قانون التخفيف:

\[\text{تركيز المحلول المطلوب} = \frac{\text{الحجم الذي يوجد من المحلول الرئيسي} \times \text{التركيز الرئيسي}}{\text{التركيز المطلوب}} \]

1. اضافة رابع من حمض البرولين هي (0.002 mol/L) جزء بالمليون

2. تم تحضير محلول رئيسي من حمض البرولين بوزن غرام منه وأدائته في نتر من الماء المخفق ثم تحضير التراكيز المختلفة من (0.10 mol/L) جزء بالمليون وحسب قانون التخفيف أعلاه إضافة إلى تركيز معاملة السيطرة (صفر).

3. ثلاثة مكررات وبالتالي يكون عدد الوحدات التجريبية في التجربة (عدد الأصص) هي (48) أصيصًا سعة كل أصيص

4. تم تمديد الزراعة الموجودة في الأصص قبل عملية زراعة البذور بسحاب سوير سوبر فوسفات بعجل (0.70) غرام/عصيص، كما جرى إضافة سماد البوت سكيد (0.35) غرام/عصيص كدفعة ثانية بعد مرور (43) يوماً من الزراعة.

زرعت حبوب الحنطة * صنف إباع 99 بتاريخ 20/08/2009 بعد (16) بذرة لكل أصيص وتم الري بالماء لوصول إلى (50)٪ من السعة الحقلية، وتم متابعة العمليات الزراعية من زيارة الادغال خلال مدة التجربة وتم خفي البدارات إلى (11)بدرة بعد مرور (14) يوماً من الزراعة واستمر الزراعة بالبها العادي حتى ظهور الورقة (الثالثة أو الرابعة)، و بتاريخ 2009/1/11 تم تبديل الأرواء إلى الأرواء باستعمال تراكيز كلوريد الصوديوم المحضرة سابقاً وكانت عملية الأرواء جديبة على طرق وزن الأصص لغرض

* جلبت الحبوب من البرنامج الوطني للاستخدام الأدبي للموارد المائية في حوضي دجلة والفرات، وزارة الزراعة.

الحصول على الوزن الريطي الأول الذي بدأ فيه التجربة. رشت النباتات بحمض البرولين صبحاً وحسب التراكيز المحضرة سابقاً و بتاريخ 20/09/14 و 20/11/14 وكان الرش بصورة متواصلة وحتى الإنبات الكريم وتزيت معاملة السيطرة بالماء المخفق مع استمرار الأرواء بحمض كلونير الصوديوم، و بعد مرور (14) يوماً نزلت النباتات إلى الرشة الثانية وبالتالي التراكيز نفسها من حمض البرولين وحسب المعاملات مع استمرار الأرواء بحمض كلونير الصوديوم، اختفت عينات بنائية للمجموع الخصري و ذلك بفضل المجموع الخصري يسكن حاد وبعدل مئة نبات لكل وحدة تجريبية وتم تطبيقها بقلوك ميلاء البها المخفق و هذا نبات الخضروات معدل (Oven) على درجة حرارة (370-350) درجة مئوية و لمدة (48) ساعة ثم طحن العالات بامتثال طاحنة كهربائية ثم أخذ وزن المعلوم لكل معاملة وتم حسب طريقة (Agiza et al , 1960)

الصفات الموروثة

1- محتوى كل من النترججين الفسفر، البرانسيوم.

2- قدرت العالات بطرق عين الجلاد الحمضية، أو أن تكون النترججين حسب طريقة (1961) (Chapman and Pratt), وتم

وقد قدرت العالات بطرق جرذ قبضة الطيف الضوئي (Spectrophotometer) عند الطول الموجي 883 تانوميتراً وفقاً لطريقة (Page et al., 1982) و وفرت البرانسيوم بطرق جرذ قبضة الطيف اللحيد (Flamephotometer).
2- نسبة البروتينات في النبات.

تم تقدير نسبة البروتينات في النبات في المجموعة الخضرى وحسب القانون التالي:

\[\% \text{Protein} = \frac{N \times 6.25}{\text{النسبة}} \]

3- محتوى الکلووروفيل الكلی في اوراق النبات (مايکروغرام/سم²).

تم قياسة بواسطة جهاز تقدير الکلووروفيل Minolt (Spad) بقياسه نسبة الکلووروفيل ووزارة الزراعة، وذلك باخذ معدل إبرة قراءات لأربعة أوراق عشانًا كن معامل، وذلك بوضع إبرة جزء من الورقة تحت ذراع الجهاز وضبط عليه حيث تظهر قراءة على شاشة الجهاز.

4- محتوى حمض البرولين في النبات.

تم تقدير محتوى حمض البرولين وفق طريقة (Hyun et al., 2003).

حلل الترددات احصائيا حسب طريقة (1978) باستخدام أقل فرق معنوي (L.S.D.) عند مستوى احتمال 0.05.

النتائج والمناقشة

أكدت النتائج في الجداول (3 و 4) وجود انخفاض معنوي في معدل محتوى كل من النتروجين والفسفور والبوتاسيوم بزيادة تركيز كلوريد الصوديوم في وسط النمو عند زيادة التركيز من صفر إلى 150 مليمول/لتر، ثم ترقب التركيز من 150 إلى 100 مليمول/لتر، ثم ترقب التركيز من 100 إلى 50 مليمول/لتر، ثم ترقب التركيز من 50 إلى 0 مليمول/لتر.

وباختيار النتائج التأثير المعنوي لزيادة تركيز حمض البرولين في معدل محتوى كل من النتروجين والفسفور والبوتاسيوم ذو عند رفع تركيز البوتاسيوم من صفر إلى 300 مليمول/لتر، بل تأثير معنوي لزيادة تركيز حمض البرولين من صفر إلى 90 مليمول/لتر.

ومن الصعب أن نؤخذ أن هذا مرتبط بالإنتاجية الحاملة في النبات، تلامين ونسبة الزيادة في النتروجين ولفل الفسفور ونسبة البوتاسيوم.

جدول (3): تأثير تركيز متزايد لكل من كلوريد الصوديوم وحامض البرولين والداخلات بينهما في محتوى النتروجين(ملغم/بات) في المجموعة الخضرى للنباتات الحنطة.

<table>
<thead>
<tr>
<th>المصدر</th>
<th>تركيز كلووروفيل (ملغم/لتر)</th>
<th>تركيز حمض البرولين (PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>53.57</td>
<td>58.33</td>
<td>50.63</td>
</tr>
<tr>
<td>79.34</td>
<td>68.66</td>
<td>71.38</td>
</tr>
<tr>
<td>93.70</td>
<td>76.64</td>
<td>80.36</td>
</tr>
<tr>
<td>94.81</td>
<td>70.80</td>
<td>85.01</td>
</tr>
<tr>
<td></td>
<td>71.11</td>
<td>73.26</td>
</tr>
</tbody>
</table>

\[\text{تركيز كلووروفيل} = 3,277 \]

\[\text{تركيز حمض البرولين} = 3,277 \]

\[\text{الداخلات} = 7.254 \]

\[(0.05) \]
جدول (4) تأثير تراكيز متزايدة لكل من كلوريد الصوديوم وحامض البرولين والتفاعلات بينهما في محتوى الفسفر (ملغم/نبت) في المجموع الخضري لنبات الحنطة.

<table>
<thead>
<tr>
<th>المعادل</th>
<th>تركيز كلونيد الصوديوم (ملغم/نتر)</th>
<th>تركيز حامض البرولين (PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>المعادل</th>
<th>تركيز كلونيد الصوديوم (ملغم/نتر)</th>
<th>تركيز حامض البرولين (PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.91</td>
<td>9.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14.97</td>
<td>11.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>17.98</td>
<td>15.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>18.02</td>
<td>14.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.93</td>
</tr>
</tbody>
</table>

التصادم = 781
التصادم = 781

وأظهر التكلفة 20 جزء بالمليون من حامض البرولين زيادة أعلى في معدل محتوى عنصر نباتي الترورج وحامض البرولين مقارنة مع التركيز 30 جزء بالمليون من الحامض، أما محتوى الفسفر كان أعلى عند التركيز 30 جزء بالمليون من حامض البرولين علماً بأن هذه الزيادة لم تكن معنوية.

أما تأثير التداخل بين تركيز كلوريد الصوديوم وتركيز حامض البرولين فقد كان معنواً في قيم محتوى الترورج، ولم يكن معنواً في محتوى كل الفسفر والبوتاسيوم، في حالة الترورج، اظهرت النتائج بأن تركيز حامض البرولين 20 جزء بالمليون عند التركيز 150 ملغم/نتر كلوريد الصوديوم كان محتوى الترورج 72.64 ملغم/نبت مقارنة مع 10 ملغم/نبت عند التركيز صفر من حامض البرولين نفسه.

جدول (5) تأثير تراكيز متزايدة لكل من كلوريد الصوديوم وحامض البرولين والتفاعلات بينهما في محتوى البوتاسيوم (ملغم/نبت) في المجموع الخضري لنبات الحنطة.

<table>
<thead>
<tr>
<th>المعادل</th>
<th>تركيز كلونيد الصوديوم (ملغم/نتر)</th>
<th>تركيز حامض البرولين (PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>المعادل</th>
<th>تركيز كلونيد الصوديوم (ملغم/نتر)</th>
<th>تركيز حامض البرولين (PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65.62</td>
<td>42.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>89.32</td>
<td>60.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>118.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
ان اخضاع محتوى النترجين في النبات يعزى إلى زيادة تركيز كوديد الكلوريد نتيجة لتزايد كوديد الصوديوم المضاف من ناحية تحصيل الغلاف بين كوديد الكلوريد ونيتروجين الفسفور بشكل ترترات وفوائد على المواقع الحالية لنقل الايونات بالاضافة إلى تأثير الصوديوم السليم في تغذية الشعاع البلازمي المؤثرين في التوازن الإينوني. وللتسامح الإتروزي دوراً ضاراً في نمو الجذور مما يؤثر على اعتماد النترجين والفسفور والبوتاسيوم تحت التركيز الخالية من كوديد الصوديوم (Levitt, 1980). كذلك يعود الانخفاض في محتوى البوتاسيوم في نباتات الحضنة تحت زيادة تركيز كوديد الصوديوم في التداخل السليم بين كوديد الصوديوم والبوتاسيوم وناتجة عنها على حامل أيوني واحد. أما ان حامل أيوني البوتاسيوم في الجذور يقوم بنقل أيونات الصوديوم نظراً لوجود أي كوديد كوديد الكوديد مترابط عالي في وسط نمو الجذور. (Devitt et al, 1981).

واللأكسجين في المجموع الخصري تعود التي كون حامض البروتين بعد مصدراً للنترجين والاضافه الخارجية لمسمار البروتينات بوصرة ايجابية في تحسين نمو النباتات المعترضة للإجهاد المائي الناتج من وجود كوديد الصوديوم في وسط النمو مما انعكس على زيادة انخفاض المغذيات.

وأوضحت النتائج في جدول (2) وجود انخفاض معنوي في معدل نسبة البروتين عند زيادة تركيز كوديد الصوديوم إذ انخفضت من 18.72 إلى 14.93% عند فرع تركيز كوديد الصوديوم من صفر إلى 150 مليمول/لتر. وقد ازداد معدل نسبة البروتينات زيادة موزعية إذ ارتفع من 17.14 إلى 13.71 مع زيادة كوديد الصوديوم من صفر إلى 57 مليمول/لتر. وكماً أعلى معدل نسبة البروتينات عند التركيز 10 جزء بالمليون من حامض البروتينات إذ بلغ 17.14% مقارنة مع 13.71 عند التركيز صفر حامض البروتينات. لذا يمكن ليزيادة معنوية في معدل نسبة البروتينات بين التركيزين 0 و 2 جزء بالمليون.

<table>
<thead>
<tr>
<th>البروتينات (%) في المجموع الخصري لنبات الحضنة من كوديد الصوديوم وحامض البروتينات والتفاعلات بينهما في نسبة</th>
<th>التركيز (مليمول/لتر)</th>
<th>التركيز (PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>البروتينات</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>12.57</td>
<td>1.82</td>
</tr>
<tr>
<td>100</td>
<td>13.64</td>
<td>1.41</td>
</tr>
<tr>
<td>50</td>
<td>13.70</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>15.50</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>16.25</td>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>التركيز النترجيني (PPm)</th>
<th>التركيز (مليمول/لتر)</th>
<th>التركيز (PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.322</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>120.31</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>13.65</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>106.33</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>103.42</td>
<td>0</td>
<td>0.05</td>
</tr>
</tbody>
</table>
أوصت نتائج التجربة أن تأثير الضارب لكربريد الصوديوم في 하나ٍ من تأثيرات كربريد الصوديوم في تأثيرы البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

وسألت نتائج التجربة أن تأثير الضارب لكربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

ان ركبتين بحمض البزونين بيتيكت كربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

ان ركبتين بحمض البزونين بيتيكت كربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

ان ركبتين بحمض البزونين بيتيكت كربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

ان ركبتين بحمض البزونين بيتيكت كربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

ان ركبتين بحمض البزونين بيتيكت كربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

ان ركبتين بحمض البزونين بيتيكت كربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).

ان ركبتين بحمض البزونين بيتيكت كربريد الصوديوم في تأثيري البيض الأبيض في سياق الأبقار والصقور من مصادر اليوم. 150 مليمول/لتر كربريد الصوديوم كانت نسبة البزونين هي 16.13٪، 16.33٪ مقارنة مع 11.33٪ عند التراكيز المذكورة. وأيضاً في التراكيز المذكورة، علامة الترقيم في وحشنة الأبيض. (LSD، 0.05).
اظهرت النتائج التفاعلية التداخلية المعززة بين عامل الدراسة في محتوى الكلوروفيل
أظهر التركيز بين 30 و 43.15% لحبيض النباتات الحديثة، وتشير هذه النتائج إلى أن
كلوريد الصوديوم مثبط للتركيبات الحرارية للحبيض النباتات ربطًا بالتركيز في محتوى
الكلوروفيل. حيث كانت قيمة المحتوى الكلوروفيلي عند التركيز صفر حمام البرولين بنفس
التركيز 0.511 مل/لتر و 0.511 مل/لتر في المحافظة على النشاط الإنتقائي للبلاستيدات الخضراء
 ...
اعلام من كلوريد الصوديوم 20 مل/لتر و 0.511 مل/لتر.

آيشقح محتوي الكلوروفيل الكل في اوراق النباتات زيادة تركيز كلوريد الصوديوم بعد انخفاض
محتوى الحبيض الداخلي في نباتات جذعية الكلوروفيل مثل المغنينوم والمغنينوم العيني وتشير
نتائج الكارنا الحاملة ل_media (Maas and Grattan, 1999). أن حمام البرولين يلعب دوراً صعباً في زيادة محتوى
الكلوروفيل وتكون الحبيض البلاستيدية وله دور في المحافظة على النشاط الإنتقائي للبلاستيدات الخضراء
(SINGH et al., 1994) في كل من حمام البرولين حيث عزل أيوني الصوديوم والكلوريد زيادة اتصاص
الإيوان الأساسية ومن ضمنها أيوني المغنينوم مهم في نباتات جذعية الكلوروفيل لذا فإن النشاط الإنتقائي
بحمض البرولين تزيد من النمو الضعي للعلاقة الوضيقة بين نسبة النجارة المغنينوم والنمو والسيطرة على نقص
وتفح التغير وجوده صدوع النباتات..Fatalf (1992) نشرت نتائج جدول (8) تأثير
كل من كلوريد الصوديوم وحمام البرولين في المجموع المحاري للنباتات المحضة،
اذ هناك زيادة معززة في محتوى حمام البرولين زيادة تركيز كلوريد الصوديوم في وسط نمو الجذور وقد
ارتفع محتوى حمام البرولين من 1.153% إلى 1.153% عند تركيز كلوريد الصوديوم من صفر إلى
150 مل/لتر و 150 مل/لتر نسبة زيادة هي 150% تتفق هذه النتيجة مع نتائج (Abou 2005) ودراسة
تآثر النبات وواعيد النباتات. أن تركيز حمام البرولين من صفر إلى 30 جزء بالمليون أظهر فروق معنوية
في محتوى حمام البرولين 12 متراً 26.71 مل/لتر.

<table>
<thead>
<tr>
<th>التركيز كلونيد الصوديوم (مل/لتر)</th>
<th>تركيز حمام البرولين (PpM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>المعدل</th>
<th>التركيز كلونيد الصوديوم (مل/لتر)</th>
<th>تركيز حمام البرولين (PpM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>15.6</td>
<td>15.6</td>
</tr>
<tr>
<td>100</td>
<td>10.3</td>
<td>10.3</td>
</tr>
<tr>
<td>50</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
التركيز كلوئيد الصوديوم = 2.134
التركيب حمض البرولين = 0.05

والنسبة زيادة 121.84 %، وفيما نقل تداخل معنوي بين عاملية الدراسة في مجموع حامض البرولين ومن ثم قدرنا على محتوى حامض البرولين عند التركيز 3 ملغم /مليروبين مقترنة مع أقل قيمة لحمام البرولين وهي 10 ملغم /مليروبين عند التركيز صفر لكل من حامض البرولين و كلوئيد الصوديوم.

يعزى تجمع حامض البرولين تحت ظروف الشد المكسي بحاص و وجود كلوئيد الصوديوم في أقصى نمو اليد، حيث حصول تطورات في مسارات التحليل الحيوي الخاصة بصمغ حامض البرولين والذي أدى إلى تكوين كميات أكثر من هذا الحامض، ما أن زيادة تراكم أيونات الصوديوم زادت من فعالية الانزيم المنحل 5-Pyrroline-5-carboxylate Reductase (PSCR).

استخدام حامض البرولين في الدراسة لتنزيل حامض البرولين هو أحد الوسائط الفعالة للتفريق بين تأثيرها الضار، (Stewart, 1983)، وان تراكم حامض البرولين له دور في التصعيد الأزمنزي بين المسالك والإفدات داخل النباتات ومن ضمنها حامض البرولين، حيث تراكم حامض البرولين كميات كبيرة من الحامض الإميوني، ويعود لانزيم لحبيس كميات كبيرة من البرولين، ولكنه أدت إلى تأثيرات سلبية على نمو النباتات، وان هذه التجمع يعوض في عمل الانزيمات لابن ذلك لتمتلك النباتات اثناء مركبات دينية كلامية إميونية وهمها حامض البرولين لتكفل تأثيرات الإيزيجية وينتج عنه التأثيرات الغذائية من حامض البرولين ويتبع التراكز العالية من كلوئيد الصوديوم.

المصادر

عبد رؤيى الكحري تويق (2000). دراسة صفة تحمل الملونة في خمسة مصادر من البرز. جامعة المستنصرية، كلية العلوم، الجامعة المستنصرية، العراق.

تغلق زراعة النسيج النباتي. دار ماجستير، كلية العلوم، الجامعة المستنصرية، العراق.

Pyrroline-5-carboxylate Reductase (PSCR).

Feed Back mechanism.

LSD (0.05).

Effect of proline acid and Sodium Chloride in nutrition status of wheat plant

(Triticum aestivum L.)

Prof. Dr. Abbas J.H. AL- Saidi Department of Biology, College of Education Ibn Al-haithum, University of Baghdad.

Tc. As Amel Gh. M. AL-Kazzaz Department of Biology, College of Education (Ibn Al-haithum), University of Baghdad.

Dr. Abdel-Kareem H. Hassan State Board for Agricultural Research, Ministry of Agriculture.

Abstract

Pots experiment was conducted in the green house of the Department of Biology, College of Education (Ibn Al – haithum), University of Baghdad during the growing season of 2008 – 2009. The experiment aimed to study the effect of the increasing concentration of both Proline acid (zero,10,20,30)PPm and Sodium Chloride (zero,50,100,150) mM /L in some physiological characteristics, such as the contents of Nitrogen, Phosphorus, Potassium, Protein percentage, total chlorophyll content and proline acid content.

The experiment was designed as Completely Randomized Design (CRD) by three replicates (3x4x4) consisting 48 pots. Results indicated that, the increase of Sodium Chloride concentrations from 0 to 150 mM/L caused significant decrease in the average of studied physiological characteristics. Treatments with proline acid indicated significant increase in the average of physiological characteristics.
Interactions for both factors indicated that, foliar application of proline acid counteracted the adverse effects of high concentration of Sodium Chloride for studied physiological characteristics.